USSR

UDC[537.226+537.311.33]:[537+535]

YERASOVA, N. A., KAYDANOV, V. I., NOVICHKOV, A. I., and NURCHSKIY, A. B.

"Apparatus for High-Speed Measurement of Thermoelectric Parameters of Semiconductor Materials in 150-500° K Temperature Range"

Tr. Leningr. politekhn. in-t (Works of Leningrad Polytechnic Institute), 1971, No 325, pp 10-16 (from RZh-Fizika, No 1, Jan 72, Abstract No 1YE1469 by authors)

Translation: The apparatus is intended for simultaneous determination of specific electrical and thermal conductivity and the coefficient of thermoelectromotive force in a wide temperature range. Changes have been made in the construction of the device, as compared with the " λ " calorimeter, which permit reduction to the minimum of the influence of parasitic heat exchange and contact thermal resistances. An evaluation of the errors shows that in the determination of the thermoelectric coefficient of the materials studied the error connected with the accuracy of the measurements, thermocouple calibration, and geometry of the samples does not exceed 4-5%.

1/1

- 40 -

TO SECTION AND ADMINISTRATION OF THE ADMINIS

USSR

upo 621.317.799:537.311.3

YERASOVA, N.A., KAYDANCV, V.I., NOVICHKOV, A.I., NUROVELIY, A.B.

"Equipment For High-Speed Measurement Of the Thermoelectric Parameters Of Semiconductor Materials In The Temperature Range 150-500° K"

Tr. Leningr. politekhn. in-t (works Of The Leningrad Polytechnical Institute), 1971, No 325, pp 10-16 (from RZh:Elektronika i yeye primeneniye, No 2, Feb 72, Abstract No 2B77)

Translation: The equipment, in which a normal regime of the second kind is used, is intended for simultaneous determination of the thermal conductivity, the specific electrical conductance, and the coefficient of thermo-emf over a wide range of temperature. The error in determining the thermoelectric coefficient does not exceed 4--5 percent. 2 ill. 4 ref. Summary.

1/1

USSR

UDC 517.917

NUROV, T. N.

"Concerning Center Conditions"

Tr. Samarkand. un-ta (Works of Samarkand University), 1970, No. 181, pp 115-129 (from RZh-Matematika, No 4, Apr 71, Abstract No 4B205)

Translation: Conditions are given under which the coordinate origin is the center for the system $x' = -y + \sum_{i=2}^{\infty} X_i(x, y, z),$

 $y' = x + \sum_{i=2}^{\infty} Y_i(x, y, z),$ $z' = -z + \sum_{i=2}^{\infty} Z_i(x, y, z).$

where X_i , Y_i , Z_i are homogeneous polynomials of degree i and the infinite series converge in the neighborhood of the coordinate origin. N. Rozov.

1/1

USSR

unc: 536.46.533.6

LUBI, Kh. and NURSTE, Kh.
"Experimental Investigation of the Aerodynamic Characteristics of
"Experimental Investigation of the Aerodynamic Characteristics of
Burning Air and Natural Gas Jets in the Transitional Flow Region"

Tallin, <u>Izvestiya Akademii Nauk Estonskoy SSR</u>, vol 21, No 2, 1972, pp 200-204

Abstract: The subject of this article is diffusion-kinetic burning gas jets in which the gas is a mixture of natural gas and air. In an earlier article by the first of the authors named above in the same journal (No 4, 1971) differences were found between the experimental and computed values for the length of the burning jet. The present paper gives details of further experiments performed to resolve these differences. Analysis of gas burners showed that the development modes of the burning jets lie in the transition flow region or near it, with the degree of preliminary gas mixing varied within broad limits. The experiments were done on a nozzle with a diameter of 21.5 mm, with an initial average gas flow of 15 m/s in velocity, and with the air portion of the mixture varying discretely from 0 to 100% in steps of 10%. Results of the experimentation are given. It was found that, by varying the preliminary air-gas mixture, the structure of the burning jet and its aerodynamics can be varied.

USSR

UDC: 539.4:621.81

NURTAZIN, M. S.

"Investigating Residual Stresses in Glued Seams by the Folarization-Optical Method"

Tr. TsNII stroit. konstruktsiy (Transactions of the Central Scientific Research Institute of Building Structures) 1970, No. 12, pp 90-98 (from RZh-Nekhanika, No. 2, Feb 71, Abstract No. 2V1095)

Translation: On models of glued seams, the nature of the distribution of shrinkage and temperature residual stresses at the limit of the glue-glued material phase boundary is investigated. By way of a model, the gluing of overlapping steel plates with EPTs-1 glue (epoxy resin ED-5, 100 parts by weight; modifier EGT-9, 20 parts by weight; hardener, polyethylene-polyamine, 13 parts by weight). The thickness of the seam varied from one to four mm, weight). The thickness of the seam varied from one to four mm, keeping the ratio of seam thickness to length constant at 1/25. The method of obtaining the model is described. The obtained results are explained. It is shown that the nature of the re-

1/2

USSR

MURTAZIN, M.S., Tr. TsNII stroit. konstruktsiy, 1970, No 12, pp 90-98 (from RZh-Mekhanika, No 2, Feb 71, Abstract No 2V1093)

sidual stress distribution (for shrinkage and temperature) and the magnitude of the stress show practically no change with variations in thickness. The tangential stresses to along the length of the glued seam are heterogeneously distributed. The maximum stress values arise at the edges of the seams, while the zone of peak stress is spread no further than three thicknesses of the seam. The raximum tangent stresses to are distributed of the seam. The magnitude of the shrinkage stresses in the more uniformly. The magnitude of the shrinkage stresses in the glued combinations of metals, on the basis of EPTs-1 glue, is glued combinations of metals, on the basis of the residual small, about 8 kg/cm². The fundamental part of the residual stresses relate to the temperature; they amount to 130 kg/cm².

5/5

- 112 -

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002202230007-3"

547.241 UDC:

1 / ...

NURTDINOV, S. Kh., KHAYRULLIN, R. S., TSIVUNIN, V. S., ZYKOVA, T. V., NURTDINOV, USSR G. Kh., KAMAY, G. Kh. (deceased), Kazan' Institute of Chemical Technology imeni S. M. Kirov

"On the Interaction of Chlorides of Trivalent Phosphorus With Saturated Ketones"

Leningrad, Zhurnal Obshchey Khimii, Vol 40 (102), No 11, Nov 70, pp 2377-2382

Abstract: The authors studied reactions of phosphorus trichloride, ethyldichlorophosphine and phenyldichlorophosphine with acetone, methylethylketone, acetophenone and methylbutylketone. It was found that all of these components react smoothly with heating to 90-170°C for 16-20 hours. The reaction products in most instances were purified by vacuum distillation, resulting in colorless liquids with a slight characteristic odor. In the case of acetophenone, the products were isolated by recrystallization from alcohols. Infrared and paramagnetic resonance spectroscopic studies were used to determine the reaction mechanism for chlorides of trivalent phosphorus with ketones. Some of the properties of the resultant cyclic oxaphospholenes are tabulated.

1/1

UDC 547.341.26.118.07

NURTDINOV, S. Kh., TSIVUNIN, V. S., NURTDINOV, G. Kh., and KAMAY, G. Kh., Kazan Institute of Chemical Technology

"A Method of Making Derivatives of α -Phenylvinylphosphonic Acid"

Moscow, Otkrytiya, izobreteniya, promyshlennyye obraztsy, tovarnyye znaki, No 1, Jan 71, Author's Certificate No 289094, division C, filed 10 Nov 69, published 8 Dec 70, p 77

Translation: This Author's Certificate introduces: 1. A method of making derivatives of a-phenylvinylphosphonic acid of the general formula

$$CH_2 = C - P - 0C_6H_5$$

$$C_6H_5 Z$$

where Z is Cl or C_6H_5O . As a distinguishing feature of the patent, phenyldichlorophosphite or diphenylchlorophosphite is interacted with acetophenone in the presence of heat in a closed system with subsequent isolation of the goal product by conventional methods. 2. A modification of this method 1/2

				CHERT AND SHOWING BALL	AND REAL OF
TICCR			nra oh	raztsy,	Ŀ,
NURTDINOV, S. Kh., et al. tovarnyye znaki, No 1, Jan	Othrutiva, izobret	eniya, pro	myshlennyye oo	on C,	
NURTDINOV, S. Kh., et al.	71 Author's Certi	ficate No	789094, 41425		
tovarnyye znaki, No 1, Jan filed 10 Nov 69, publishe	d 8 Dec 70, p 77				
filed 10 Nov 69, published distinguished by the fact		-s +a 150-	170°C.		
abod by the fact	that heating is do	ne co 150			
distinguished					
			+ 1 The Control of th		
	•				
		Francisco Francisco		•	
			1		
0.10					
2/2					
	# J1 -				CHARLEST MEDICAL STATE OF

USSR UDC 547.241

NURTDINOV, S. Kh., ISMAGILOVA, N. M., MAMINA, A. I., ZYKOVA, T. V., and TSIVUNIN, V. S., Kazan' Chemical Technological Institute imeni S. M. Kirov

"Reaction of Trivalent Phosphorus Acid Chlorides With Esters of Pyruvic Acid"

Leningrad, Zhurnal Obshchey Khimii, Vol 43 (105), No 12, Dec 73, pp 2645-2648

Abstract: The reactions of trivalent phosphorus acid chlorides with pyruvic acid esters have been investigated; the reaction products are alkyl(aryl)-(1-chloro-1-carbalkoxy)ethylphosphinous acid chlorides. When diethylchloro-phosphine is reacted with ethylpyruvate, an oxide of diethyl(1-carboethoxy-ethyl)phosphine and diethylphosphinous acid chlorides are formed.

1/1

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002202230007-3"

USSR

UDC 547.341

MURTDINOV, S. KH., ISMAGILOVA, N. M., NAZAROV, V. S., ZYKOVA, T. V., SALAKHUTDINOV, R. A., SULTANOVA, R. B., and TSIVUNIN, V. S., Kazan' Chemical-Technological Institute Imeni S. M. Kirov

"Reaction of Aryl- and Diarylchlorophosphites With Cyclic Ketones"

Leningrad, Zhurnal Obshchey Khimii, Vol 43 (105), No 6, Jun 73, pp 1251-1254

Abstract: Phenyl- and diphenylchlorophosphites react with equimolar quantities of cyclohexanone and cyclopentanone upon heating to 130-150° for 17-20 hrs in a closed system, yielding the respective esters of cyclohexen-1-yl(cyclopenten-1-yl)phosphonic acids. The diphenyl ester of cyclohexen-1-ylphosphonic acid (I) reacts with phosphorus pentasulfide converting to the thiophosphonic acid derivative. Bromine adds across the double bond of (I) producing a dibromide which can be dehydrobrominated to diphenyl ester of 2,6-cyclohexadiene-1-ylphosphonic acid.

1/1

USSR

UDC 547.476.053

NURTDINOV. S. Kh., ISMAGILOVA, N. M., ZYKOVA, T. V., SALAKHUDINOV, R. A., TSIVUNIN, V. S., and KAMAY, G. Kh., Kazan' Chemico-Technological Institute imeni S. M. Kirov

"Reaction of Alkyldichlorophosphines With Chlorides of Carboxylic Acids"

Leningrad, Zhurnal Obshchey Khimii, Vol 41, No 11, Nov 1971, pp 2,486-2,490

Abstract: The reactions of phosphines and other phosphorus derivatives with various acids and acid derivatives have been studied, but no information on alkyldichlorophosphines has thus far been published. The authors studied six members of this group in reactions with acyl chlorides of carboxylic acids. Products in the case of acetyl and benzoyl chlorides, following treatment with the adducts with alcohols, consisted of the esters of the alkylketo-phosphinic acids; in the case of di- and trichloracetyl chlorides, they consisted of vinyl esters of pentavalent phosphorus acids. Procedural details of tests and physical constants of end-products are given.

1/1

. USSR

UDC 547.26'118

NURTDINOV. S. KH., KHAYRULLIN, R. S., TSIVUNIN, V. S., ZYKOVA, T. V., KAMAY, G. KH.

"Interaction of Diarylchlorophosphites with Saturated Ketones"

Leningrad, Zhurnal Obshchey Khimii, Vol XLII (CIV), No 1, 1972, pp 123-125

Abstract: It was demonstrated earlier [S. Kh. Nurtidinov, et al., USSR Author's Certificate No 249386, Byull. Izobr., No 25, 1969; ZhOKh, No 40, 36, 1970; ZhOKh, No 40, 2377, 1970] that halogenophosphines react comparatively smoothly with saturated ketones with the formation of cyclic oxaphospholenes. As a continuation of this research, a study was made of the reaction of diphenyl-chlorophosphite with acetone, methylethyl, methylpropyl, methylbutylketone and acetophenone. The indicated components react with heating to 100-160° for 10-20 hours with the formation of the vinyl derivatives of pentavalent phosphorus:

$$(PhO)_{2}PC1 + RCCH_{2}R' \xrightarrow{-HC1} (PhO)_{2}P - C=CHR'$$

(C₆H₅O)₂P - C=CHR'

1/2

USSR

NURTDINOV, S. KH., et al., Zhurnal Obshchey Khimii, Vol XLII (CIV), No 1, 1972, pp 123-125

The primary aryldichlorophosphites react with saturated ketones as follows:

Infrared spectra are presented confirming the structure of the diphenyl esters of butene-g-ylphosphonic-l acid and x-phenylvinylphosphonic acid. The paramagnetic resonance spectrum is presented for the diphenyl ester of propenylphosphonous-2 acid.

2/2

. 31 ..

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002202230007-3"

arastrustantar de la company de la compa

USSR

UDC 547.241.284

NURTDINOV. S. KH., KHAYRULLIN, R. S., ZYKOVA, T. V., TSIVUNIN, V. S., KAMAY, G. KH. (deceased), Kazan' Institute of Chemical Technology imeni S. M. Kirov

"Reaction of Diethylchlorophosphine With Ketones"

Leningrad, Zhurnal Obshchey Khimii, Vol 41, No 10, 1971, pp 2158-2162

Abstract: Continuing their studies of chlorophosphine reactions with saturated ketones, the authors synthesized a series of tertiary phosphine oxides by heating (at 100-110°) chlorodiethyl-phosphine with aliphatic ketones or acetophenone. The chemical structure of the products was confirmed by their IR and NMR spectra and conversion to some other compounds. —Chloroisopropyldiethylphosphine oxide when treated with alcoholic alkali or acetic anhydride yielded diethylisopropenylphosphine oxide or —acetoxyisopropyldiethylphosphine oxide. Diethyl- —phenylvinylphosphine oxide with alcoholic alkali gave sodium dialkylphosphimete. The elemental analysis data and physical constants of the syn-1/1 thesized compounds are given.

- 57 -

USSR

UDC 547.241

MURTDINOV. S. KH., KHAYRULLIN, R. S., BURMAKINA, T. V., ZYKOVA, T. V., SATAKHUTDINOV, R. A., TSIVUNIN, V. S., and KAMAY, G. KH. (DECEASED), Kazan' Institute of Chemical Technology

"Reaction of Aryldichlorophosphines with Ketones"

Leningrad, Zhurnal Obshchey Khimii, Vol 41, No 8, Aug 71, pp 1685-1688

Abstract: Continuing their study of the condensation of primary chlorophosphines with ketones, the authors investigated the reaction of phenyland tolyldichlorophosphine with saturated ketones. It was found that these components react on heating for 10-20 hours at 90-130 to give cyclic explosphospholenes, which react with alcohols to give corresponding esters of early—f-ketophosphinic acids. IR, NMR, and PMR spectroscopy methods were used to study the mechanism of the interaction of aryldichlorophosphines with ketones. The results confirm that at one of the stages of the reaction f-ketophosphinic acid chlorides are formed.

1/1

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002202230007-3"

द्धाराज्या प्रदेशका व्यवस्था वर्षा वर्ष वर्षा वर

USSR

UDC: 547.241

NURTDINOV, S. Kh., KHAYRULLIN, R. S., TSIVUNIN, V. S., ZYKOVA, T. V., NURTDINOV, G. Kh., KAMAY, G. Kh. (deceased), Kazan' Institute of Chemical Technology imeni S. M. Kirov

"On the Interaction of Chlorides of Trivalent Phosphorus With Saturated Ketones"

Leningrad, Zhurnal Obshchey Khimii, Vol 40 (102), No 11, Nov 70, pp 2377-2382

Abstract: The authors studied reactions of phosphorus trichloride, ethyldichlorophosphine and phenyldichlorophosphine with acetone, methylethylketone, acetophenone and methylbutylketone. It was found that all of these components react smoothly with heating to 90-170°C for 16-20 hours. The reaction products in most instances were purified by vacuum distillation, resulting in colorless liquids with a slight characteristic odor. In the case of acetophenone, the products were isolated by recrystallization from alcohols. Infrared and paramagnetic resonance spectroscopic studies were used to determine the reaction mechanism for chlorides of trivalent phosphorus with ketones. Some of the properties of the resultant cyclic oxaphospholenes are tabulated.

1/1

- 31 -

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002202230007-3"

USSR

UDC: 547.241

NURTDINOV, S. Kh., TSIVUNIN, V. S., KHAYRULLIN, R. S., KASHTANOVA, V. G., and KAMAI, G. Kh., Kazan' Institute of Chemical Technology

"Reaction of Ethyl- and Phenyldichlorophosphine with Acetone"

Leningrad, Zhurnal Obshchey Khimii, Vol 40, No 1, Jan 70, pp 36-40

Abstract: Liquid heterocyclic compounds, 2-keto-2-ethyl-(or phenyl-)-3.3.5-trimethyl-1-oxa-2,4-phospholenes (I), were obtained in 67-705 yields by
heating for 10-20 hours in a sealed tube mixtures of ethyl- or phenyldichlorophosphine with acetone at 75-80° or 100°, respectively. Physical constants of
I are given. The structure of I was determined from IR and MAR spectra. Heating I with methanol at 70-150° in a sealed tube gave ethyl- or phenyl 1,
l-dimethyl-3-ketobutylphosphinites (II) in 49-736 yields. All II compounds
but one are liquids. Similarly heating I at 110° with water slightly acidified with hydrochloric acid gave 52-546 yields of ethyl- or phenyl-1,1-dimethyl-3-ketobutylphosphinic acids, crystalline solids with melting point
112-13° and 121°, respectively. The structures of the phenylketooutylphosphinic acid. I and II were determined from IR spectra.

1/1

- 52 -

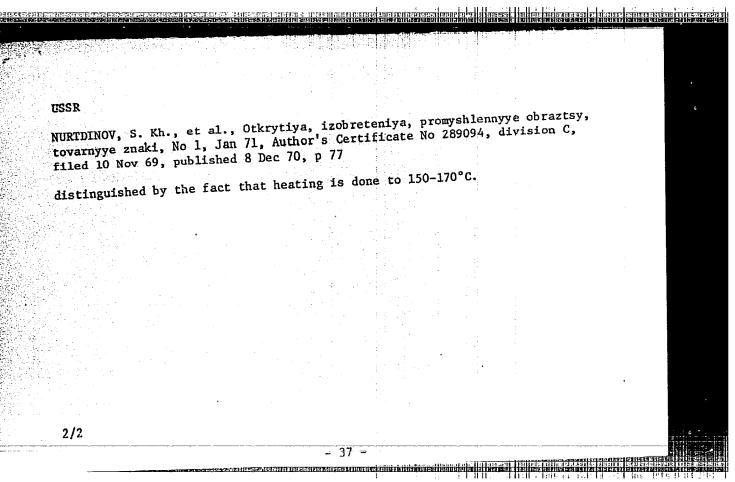
APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002202230007-3"

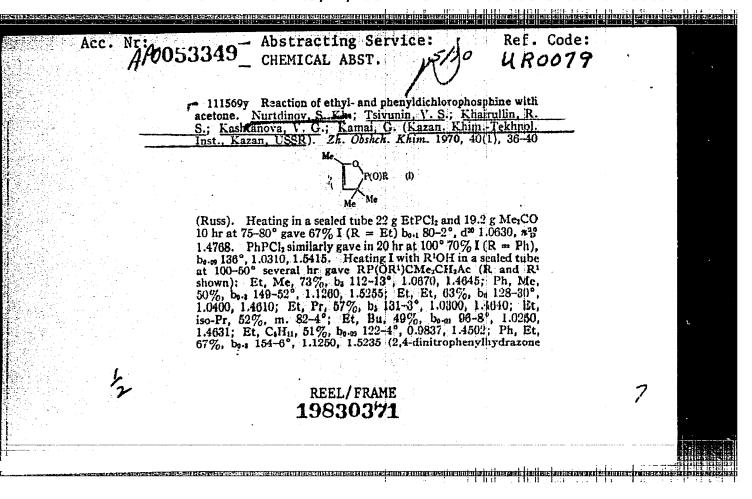
USSR

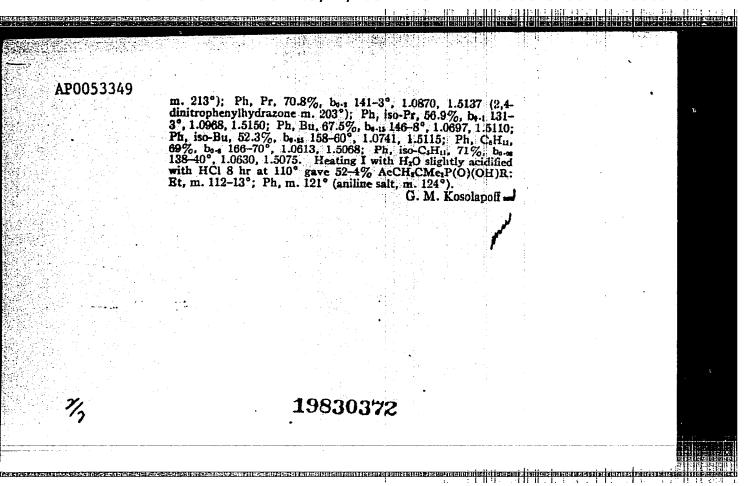
UDC 547.341.26.118.07

NURTDINOV, S. Kh., TSIVUNIN, V. S., NURTDINOV, G. Kh., and KAMAY, G. Kh., Kazan Institute of Chemical Technology

"A Method of Making Derivatives of α-Phenylvinylphosphonic Acid"


Moscow, Otkrytiya, izobreteniya, promyshlennyye obraztsy, tovarnyye znaki, No 1, Jan 71, Author's Certificate No 289094, division C, filed 10 Nov 69, published 8 Dec 70, p 77


Translation: This Author's Certificate introduces: 1. A method of making derivatives of α-phenylvinylphosphonic acid of the general formula


$$CH_2 = C - P - 0C_6H_5$$

$$C_6H_5 Z$$

where Z is C1 or C_6H_50 . As a distinguishing feature of the patent, phenyl-dichlorophosphite or diphenylchlorophosphite is interacted with acetophenone in the presence of heat in a closed system with subsequent isolation of the goal product by conventional methods. 2. A modification of this method 1/2

UNCLASSIFIED PROCESSING DATE--27NDV70

I/Z OO8

UNCLASSIFIED PROCESSING DATE--27NDV70

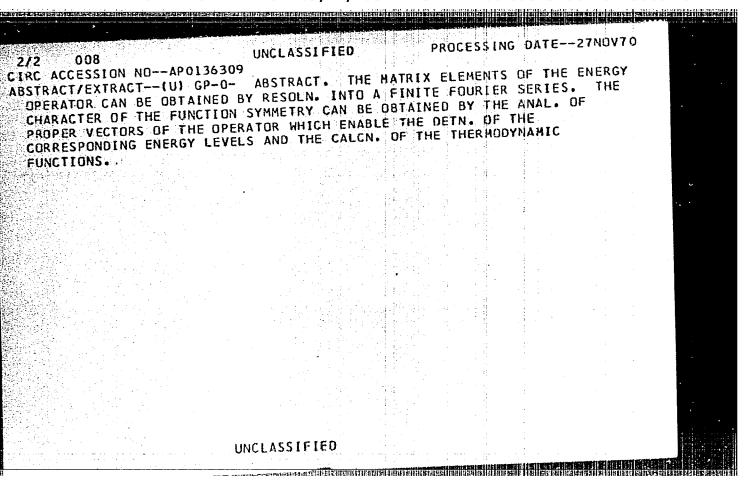
I/ITE--USE OF A VARIATION PRINCIPLE FOR CALCULATING THERMODYNAMIC
FUNCTIONS OF THE INTRAMOLECULAR ROTATION OF SYMMETRIC TOPS -UAUTHOR-(03)-MOSIN, A.M., NURULAYEV, N.G., MIKHAYLOV, A.M.

COUNTRY OF INFO--USSR

SOURCE-ZH. FIZ. KHIM. 1970, 44(5), 1359

DATE PUBLISHED----70

SUBJECT AREAS--PHYSICS


TOPIC TAGS--THERMODYNAMIC FUNCTION, VECTOR ANALYSIS, MOLECULAR PHYSICS

CONTROL MARKING--NO RESTRICTIONS

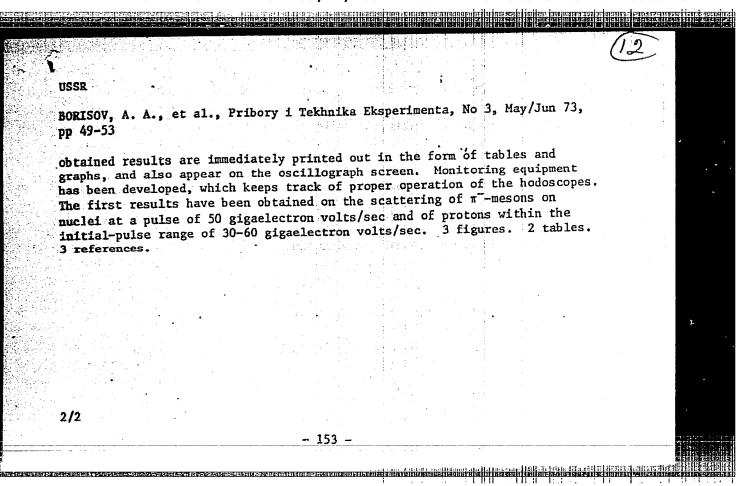
DOCUMENT CLASS--UNCLASSIFIED
PROXY REEL/FRAHE--3007/0875

STEP NO--UR/0076/70/044/005/1359/1359

CIRC ACCESSION NO--AP0136309
UNCLASSIFIED

(12)

USSR


UDC 539.1.074.3

BORISOV, A. A., BUGORSKIY, A. P., BUSHNIN, Yu. A., DEREVSHCHIKOV, A. A., DUNAYTSEV, A. F., ZHIL'CHENKOV, V. D., MATULENKO, Yu. A., MESHCHANIN, A. P., MIKHAYLOV, Yu. V., NURUSHEV, S. B., SEN'KO, V. A., SMIRNOV, V. V., SMIRNOV, Ye. V., SISKIN, V. V., SOLOV'YEV, L. F., and SOLOV'YANOV, V. L., Institute of High-Energy Physics, Serpukhov

"A Hodoscopic Installation for Investigation of the Elastic Scattering of High-Energy Particles"

Moscow, Pribory i Tekhnika Eksperimenta, No 3, May/Jun 73, pp 49-53

Abstract: A description is given of a hodoscopic installation, developed at the Institute of High-Energy Physics, for investigation of the elastic scattering of high-energy particles within the pulse range of 30-60 gigaelectron volts/sec. The range of dispersion angles covered by the installation is 0-29 millirads with an angular resolution of \pm 0.17 millirad. The total solid angle is 39 microsteres. The pulse is determined to within \pm 0.22%. The resolving time is 35 nanosec. The dead time is 50 microsec. The pulse pass band of the spectrometer is 8%. The statistics-setup is up to 10^6 per hour. The installation is electrically coupled to a "Minsk-22" computer, which stores and processes the information during the experiment. The 1/2

USSR

UDC 669.24.053.24

NUS, G. S.

"Intensification of Electric Melting and Calculations of the Thermal Ore Slag Electric Furnaces"

Sb. nauch. tr. Nii tsvet. met. (Collected Scientific Works of the Scientific Research Institute of Nonferrous Metallurgy), 1971, No 3, pp 106-113 (from RZh-Metallurgiya, No 4, Apr 72, Abstract No 4G312)

Translation: A model of the operating process of slag electric melting of Ni charge is proposed. Data are presented on the mathematical description and physical simulation of the process. The proposed procedure for calculating the thermal or slag electric furnaces with intensification of electric melting is given. Two tables and a 2-entry bibliography.

1/1

- - - - - - -

UDC 576.851.49 (Bact. typhi).083.35:663.14:636.087.24

USSR

KASHANOVA, N. I., NUSINOV. A. E., BENDAS, L. G., and ZHARIKHINA, M. A., Moscow Municipal Sanitary-Epidemiological Station and Moscow Pilot Plant for Enzyme Preparations

"Use of a Fungus Hydrolysate from Nutrient Yeasts as the Base of a Nutrient Medium for Phage Typing of Salmonella typhi"

Moscow, Laboratornoye Delo, No 9, 1971, pp 553-555

Abstract: A nutrient medium derived from yeast hydrolysate is a quick and inexpensive way of phage typing the agent of typhoid fever. The medium consists of the hydrolysate diluted with water (1:5), sodium chloride, and agar. Two drops of Vi-I phage are added to a test tube with the hydrolysate after it is inoculated with S. typhi at the rate of 50 million cells in 1 ml of medium. Complete lysis occurs within 5 hours. The suitability of the yeast hydrolysate for typing S. typhi was successfully tested on 100 cultures isolated from bacteria carriers and typhoid patients.

1/1

CIA-RDP86-00513R002202230007-3" APPROVED FOR RELEASE: 09/17/2001

"APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002202230007-3 UDC 518:517.392 USSR NUTFULLIN, Sh. N. "Quadrature and Cubature Formulas for Improper Integrals Containing Parameters" Uch. zap. Kemerov. gos. ped. in-t (Scientific Notes of the Kemerovo State Pedagogical Institute), No 23, 1970, pp 49-58 (from Referativnyy Zhurnal --Matematika, No 7, July 71, Abstract No 9B974, by I. Shelikhova)

Translation: Quadrature and cubature formulas with algebraic degree of accuracy € 2m - 1 are derived for computing convergent improper integrals containing parameters

$$I_{n}(\alpha) = \int_{-\infty}^{\infty} e^{-x^{\alpha}} |x|^{2\alpha} I(x) dx \left(\alpha > -\frac{1}{2}\right)$$

and . .

$$I_{1}(\beta) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\left(x^{2} + \beta xy + y^{2}\right)} \psi(x, y) dxdy \left(-2 < \beta < 2\right).$$

1/2.

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002202230007-3"

USSR

NUTFULLIN, Sh. N., Uch. zap. Kemerov. gos. ped. in-t (Scientific Notes of the Kemerovo State Pedagogical Institute), No 23, 1970, pp 49-58 (from Referativnyy Zhurnal -- Matematika, No 7, July 71, Abstract No 98974, by I. Shelikhova)

Quadrature formulas with cusps in the roots of a Sonin polynomial and a Pollaczek polynomial are derived, along with equiveighted quadrature formulas containing a Sonin weighting function. Cubature formulas with cusps in roots of Hermite polynomials and with weights containing hyperbolic functions whose cusps lie on concentric circles symmetric to the coordinate axes are obtained. Examples are presented for the formulas derived, along with a table of cusps and coefficients of the interpolational quadratures. (12 bibliographic references)

2/2

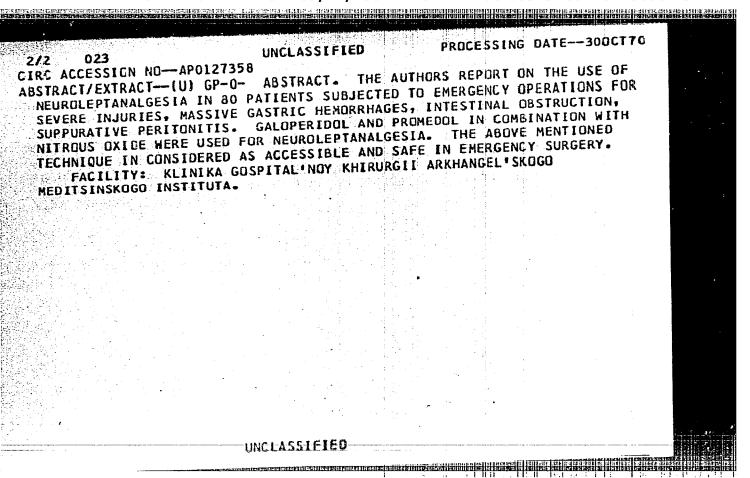
APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002202230007-3"

ete sa penesse de la recuestra de la companya de la

72 UZ3 TLE—THE EMPLOYMENT OF NE	UNCLASSIFIED PROCESSING DATE SOUCTED JROLEPTANALGESIA IN EMERGENCY SURGERY -U-
THOR-(02)-NUTRIKHIN. N.A.	, VASILYEVA, YE-P.
CUNTRY OF INFO-USSR	
BURGE-KHIRURGIYA, 1970, N	R 6√ PP 100-103
ATE PUBLISHED70	

SUBJECT AREAS-BIOLOGICAL AND MEDICAL SCIENCES

TOPIC TAGS—ANESTHESIA, ANALGESTIC DRUG, SURGERY, INJURY, HEMORRHAGE, INTESTINAL OBSTRUCTUION, PERITONEUM


CENTREL MARKING-NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--3001/1957

STEP NO--UR/0531/70/000/006/0100/0103

CIRC ACCESSION NU-APO127358

UNCLASSIFIED-

1/2 010 UNCLASSIFIED PROCESSING DATE--04DEC70
TITLE--TRANSAMINATION OF SOME AMINO ACIDS WITH ALPHA, KETOGLUTARATE IN

HOMOGENATES OF GRAPEVINE ROOTS -U-

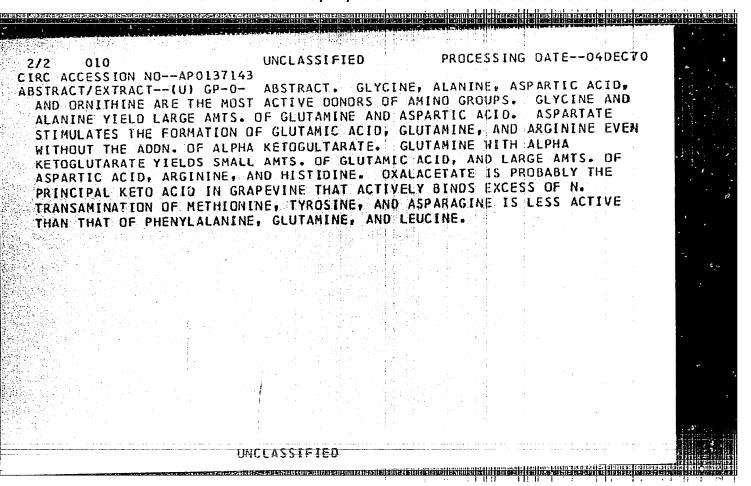
COUNTRY OF INFO--USSR

SOURCE--SOOBSHCH. AKAD. NAUK GRUZ. SSR 1970, 57(1), 205-8

DATE PUBLISHED----70

SUBJECT AREAS -- AGRICULTURE, BIOLOGICAL AND MEDICAL SCIENCES

TOPIC TAGS--AGRICULTURE CROP, PLANT PHYSIOLOGY, AMINO ACID, TRANSAMINASE


CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--3007/1964

STEP NO--UR/0251/70/057/001/0205/0208

CIRC ACCESSION NO--APO137143

UNCLASSIFIED

UDG 621.382.2

USSR

NUYANZIN. Y.P.

"Investigation Of The Characteristics Of Semiconductor Surface Capacitance"

Tr. Uchebn. in-tov svyazi. M-vo svyazi SSSR (Works Of Educational Institutions Of Communication. Ministry Of Communication SSSR), 1970, Issue 49, pp 211-214 (from RZh-Elektronika i yaye primenaniye, No 3, March 1971, Abstract No 38113)

Translation: The method is described and the results are presented of an investigation of the dependences of the capacitance C and the figure of merit Q on the voltage V for surface varactors (SV) of the radiofrequency band. The dependences C(U) and Q(U) have a qualitatively similar "step-by-step" character. An abrupt change of the magnitudes C and Q takes place in the regionV from -10 10 v. The dependence of C on the frequency is very weak. The large magnitudes of Q correspond to a regime of the SV when the capacitance of the surface layer of the semiconductor is much more than the capacitance of the dielectric layer. In this regime Q is decreased with an increase of the frequency. From the data obtained it follows that a SV can be used as nonlinear capacitances in radio engineering devices. Preliminary computations show that on the basis

1/2

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002202230007-3"

USSR

NUYANZIN, V. P., Tr. Uchebn. in-tov svyazi. M-vo svyazi SSSR, 1970, Issue 49, pp 211-214

of the specimens of SV investigated it is possible to create controlled reactive elements or systems in which amplitude modulation is produced by a change of the coupling of the generator with the load. The reactive power of such a system amounts to 7-10 volt-ampere with losses at a frequency of 20 MHz of approximately 0.18 watt. 1 ill. 8 ref. V.B.

2/2

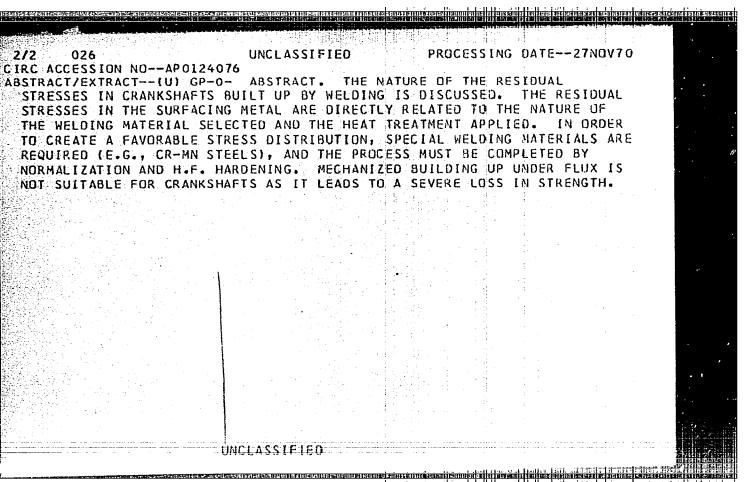
USSR

UDC 911.3.616-02.614.77(470.311)

NUYKIN Yamay

The Effect of Soil pH on the Distribution of Leptospirosis in Moskow Oblast Animals

Tr. Mosk. vet. akad. (Works of Moscow Veterinary Academy), 1970, 54, pp 120-121 (from RZh-36. Meditsinskaya Geografiya, No 1, Jan 71, Abstract No 1.36.57)


Translation: A comparison of the map of the geographical distribution of leptospirosis by oblast rayon with the map of fields and pastures having acid soil (pH 4.0-5.5) showed that with increase in the area of pastures and fields with acid soil the number of unsafe points, and the number of sick and dead animals decreased abruptly, and in regions with more than 75% of area with acid soil, no disease at all was recorded.

1/1

1/2 026 UNCLASSIFIED PROCESSING DATE--27NOV70 FITLE--RESIDUAL STRESSES IN BUILT UP CRANKSHAFTS -U-AUTHOR-(03)-NALIVKIN, V.A., CHEPELENKO, V.I., NUYKINA, T.P. COUNTRY OF INFO--USSR SOURCE-AVTOMAT. SVARKA, FEB. 1970, (2), 55-49 DATE PUBLISHED----70 SUBJECT AREAS--MATERIALS, MECH., IND., CIVIL AND MARINE ENGR. PROPULSION AND FUELS TOPIC TAGS-RESIDUAL STRESS, BIBLIOGRAPHY, CHRCMIUM STEEL, MANGANESE STEEL, ENGINE CRANKSHAFT, WELD FACING, METAL SURFACING CONTROL MARKING--NO RESTRICTIONS DOCUMENT CLASS--UNCLASSIFIED STEP NO--UR/0125/70/000/002/0055/0059 PROXY REEL/FRAME--2000/0317 CIRC ACCESSION NO--APO124076

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002202230007-3"

UNCLASSIFIED

UNCLASSIFIED PROCESSING DATE--020CT70

I/2 041

TITLE--EVAPORATION OF A HIGHLY CONCENTRATED SODIUM AND POTASSIUM NITRATE

AND CHECKIDE SOLUTION IN AN EXTERNAL BOILING ZONE -U
AUTHOR--NUZHA, N.N.

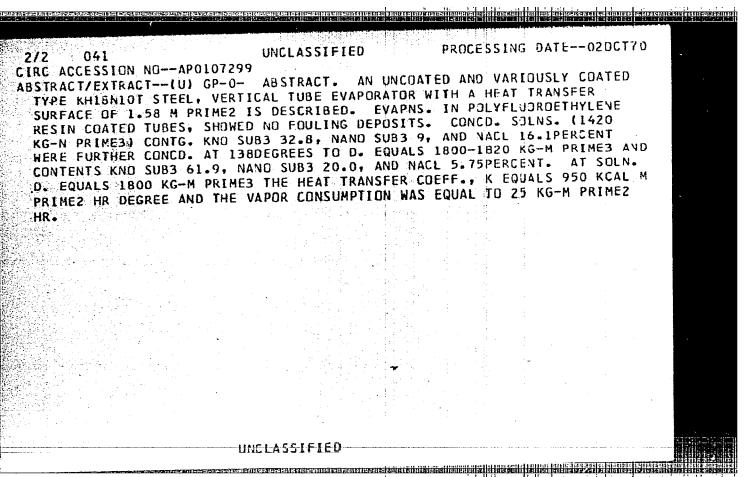
COUNTRY OF INFO--USSR

SOURCE--KHIM. NEFT. MASHINOSTR. 1970, (2), 16-17

DATE PUBLISHED----70

SUBJECT AREAS--CHEMISTRY. MATERIALS

TOPIC TAGS--STEEL, METAL COATING, POTASSIUM NITRATE, SODIUM NITRATE, TOPIC TAGS--STEEL, METAL COATING, CHLORIDE, AQUEOUS SOLUTION, SODIUM CHLORIDE, HEAT TRANSFER RATE/(U)KH18N1OT STEEL


CONTROL MARKING-NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1989/0757

STEP NO--UR/0314/70/000/002/0016/0017

CIRC ACCESSION NU--APO107299

UNCLASSIFIED

USSR

UDC 576.312.36

NUZHDIN. N. I. Corresponding Member, Academy of Sciences USSR and PASTUSHENKO-STRELETS, N. A., Institute of Biophysics, Academy of Sciences USSR, Moscow

"Reasons for the High Radioresistance of Barley Seeds From Plants Grown in High Mountains (Western Pamirs)"

Moscow, Doklady Akademii Nauk SSR, No 4, 1971, pp 954-957

Abstract: Natural ultraviolet radiation, especially in regions of intense insolution like the Western Pamirs, clearly has a protective effect against ionizing radiation. Seeds from two barley varieties were grown under conditions that excluded the ultraviolet part of the spectrum and then exposed to Cs¹37 gamma rays at various doses. The yield of chromosome aberrations counted in meristematic cells of root tips in late anaphase and early telophase served as a criterion of radioresistance. Cytological analysis showed that the frequency of chromosome aberrations in gamma-irradiated seeds from plants deprived of ultraviolet radiation throughout the growing period was much

1/2

--20--

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002202230007-3"

USSR

MUZHDIN, N. I. and PASTUSHENKO-STRELETS, N. A., Doklady Akademii Nauk SSR, No 4, 1971, pp 954-957

higher than in roots of seeds grown under light conditions normal for the Western Pamirs (control). In the variations without irradiation, the frequency of chromosome aberrations was virtually the same in both the experimental and control seeds of both barley varieties.

2/2

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002202230007-3"

UNCLASSIFIED PROCESSING DATE-300CT70
TITLE—CHROMOSOME MUTATIONS INDUCED BY SPACE FLIGHT FACTORS IN BARLEY
SEEDS DURING THE FLIGHT OF THE AUTOMATIC STATIONS ZOND-5 AND ZOND-6
AUTHOR-(05)-NUZHDIN. N.I., DOZORTSEVA, R.L., PASTUSHENKUSTRELETS, N.A.,
SAMCKHVALOVA, N.S., CHUDINOVSKAYA, G.A.
CGUNTRY OF INFO-USSR

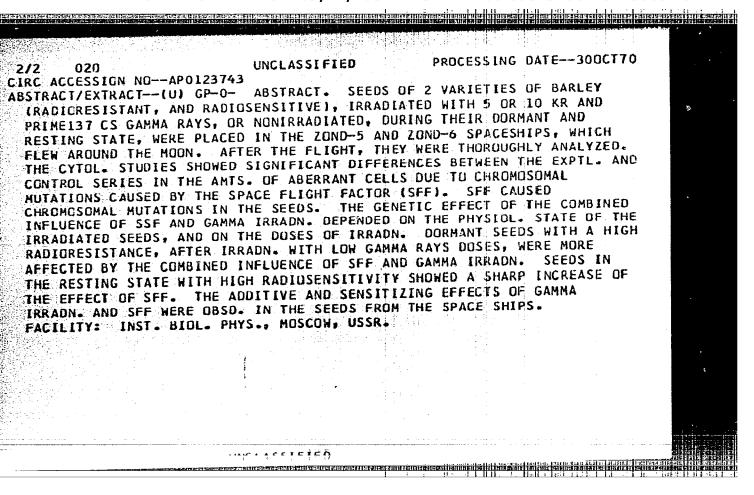
SOURCE—ZH. ABSHCH. BIOL. 1970, 31(1), 72-83

DATE PUBLISHED——70

SUBJECT AREAS-BIOLOGICAL AND MEDICAL SCIENCES

TOPIC TAGS-RADIATION INDUCED MUTATION, AGRICULTURE CROP SEED/(U)ZOND 5 CIRCUMLUNAR PROBE.

CONTROL HARKING-NO RESTRICTIONS


DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1999/1962

STEP NO--UR/0321/70/031/001/0072/0083

-CIRC ACCESSION NO--APO123743

THE LACCISTRIC

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002202230007-3"

USSR

UDC 681.32.06 + 621.318.12

TTURETSKAPIK PARKITERSKAPIK STARRET STARRETSKAPIK STARRETSKAPIK STARRETSKAPIK STARRETSKAPIK STARRETSKAPIK STAR

MUZHDIN. O.M.

"Use Of The 'Nair' Electronic Computer For Computation Of A Periodic Magnetic Focusing System Of The Comb-Shaped Type"

Elektron. tekhnika. Nauchno-tekhn. ab. Ferrit. tekhn. (Electronic Technology. Scientific-Technical Gollection. Ferrite Technology), 1970, No 2(24), pp 162-106 (from RZh--Elektronika i yeye primeneniye, No 12, December 1970, Abetract No 12A180)

Translation: The paper describes the use of an electronic computer for computation of a periodic magnetic focusing system of the comb-shaped type. The program worked out for the "Nair" computer made it possible with specified magnetic parameters for the system to determine the optimum dimensions of its elements and the characteristics of the hard magnetic material. 2 ref. Summary.

1/1

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002202230007-3"

USSR

UDC: 621.396.96:621.371

CHIZHOV, V. I., NUZHDIN, V. M., YEGOROV, V. V., OVCHINNIKOV, Ya. Yu.

"Energy Characteristics of a Signal Reflected from an Extended Rough Surface"

Tr. Mosk. aviats. in-ta (Works of the Moscow Aviation Institute), 1970, wyp. 208, pp 48-62 (from RZh-Radiotekhnika, No 1, Jan 71, Abstract No 1G28)

Translation: The authors consider the energy characteristics of a reflected signal as a function of the statistical properties of the reflecting surface, the velocity vector of the aircraft, radiation patterns of the transmitting and receiving antennas, and parameters of the probing signal. The spectrum of Doppler fluctuations at the receiver output is calculated. The indeterminacy function is found for the reflected signal. It is shown that the energy spectrum of the signal at the receiver output is a convolution of the indeterminacy function of the probing signal and the transition-spectral characteristic of the surface. Six illustrations, bibliography of three titles. N. S.

1/1

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002202230007-3"

USSR

UDC: 621.371.332.2:621.391.883.6

NUZHDIN, Yu. A.

"Calculation of Optimum Ratios of False Operation and Suppression Errors in Multichannel Radar Receivers"

Tr. Mosk. energ. in-ta (Works of Moscow Power Engineering Institute), 1972, vyp. 110, pp 26-29 (from RZh-Radiotekhnika, No 8, Aug 72, Abstract No 8G11)

Translation: [The authors determine] the ratios between errors of false operation and suppression in each of the channels of a multichannel radar receiver with respect to the criterion of maximum average effectiveness. The results are used in calculating optimum adjustment of each of the channels. A practical example is given. Two illustrations, bibliography of three titles. N. S.

1/1

- 62 -

USSR

unc 669.295:539.125.5

CHEBOTAREVA, YE. S. and NUZHDINA, S. G., Institute of High Pressure Physics, Academy of Sciences USSR

"Observation of Omega-Titanium in a Composite Alloy on a Fine-Crystalline Diamond Base"

Sverdlovsk, Fizika Metallov i Metallovedeniye, Vol 36, No 1, 1973, pp 205-207

Abstract: A structural analysis of the content of the crystal components of a composite alloy, made on a base of synthetic fine-crystalline diamonds was conducted at a pressure of 40 kbar and temperature of 1200°C for the purpose of determining the existence of omega-titanium when titanium was used as one of the binding components in the alloy. Diffraction neutronography was used to provide data on the varying role of inclusions in the composite alloy. A comparison was made of calculated interplanar distances and integral intensities with the results of neutronogram processing from which it was possible to make a conclusion about the formation of the omega-Ti phase in the aprocess of producing the composite alloy. The authors thank R. A. ALIKHANOV, A. A. SENERCHAN, and V. P. MODEBOV for advice and V. N. ULANOV for help with the experiment. One figure, one table, eight bibliographic references.

1/1

- 15 -

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002202230007-3"

UDC 541.65

NUZHDINA, Yu. A., and YEGOROV, Yu. P., Institute of Organic Chemistry Acad. Sc. Ukrssk

"Structure and Spectra of the Phosphorylated Amides and Urethanes"

Moscow, Zhurnal Strukturnoy Khimii, Vol 13, No 1, Jan-Feb 72, pp 72-76

Abstract: Earlier studies have shown a shift in the IR spectra of the -NHCO-group of phosphorylated amides and urethanes as compared to corresponding alkyl compounds. The P-N valence vibration also appeared at a higher frequency. An assumption was made that this was due to the conjugation of an unshared pair of electrons of the nitrogen atom with the vacant 3d-orbital of the phosphorus atom or by d_π -p_\pi-conjugation. The frequencies and forms of the normal vibrations of fragments Cl₂P(0)NHCOC' and Cl₂P(0)NHCOC' (C' = CCl₃, and 0' = OCl₃) were calculated as well as the distribution of the petential energy along the actual vibrational coordinates in an attempt to find out whether the shifts in the vibrational frequencies are due to electron shifts leading to a change in the field of a molecule, or to a change of kinematic parameters. It has been shown that the electron density is delocalized within the skeleton of the phosphorylated amides, shifting 1/2

इडकाइकामक्रकामक्रकामक्रकामम्बद्धामाम्बद्धामाम्बद्धामान्यामान्यामान्याम्बद्धामान्याम्बद्धामान्याम्बद्धामान्याम् इकामक्रकामक्रकामक्रकामान्याम्बद्धामान्यामान्यामान्यामान्यामान्यामान्यामान्यामान्यामान्यामान्यामान्यामान्यामान्

USSR							:
NUZHDINA, Yu. A. No 1, Jan-Feb 72		0V, Yu. P., Zh	urnal Stru	kturnoy K	himii, Vo	13,	
partially toward the electronic s				ng model	is propose	ed for	
	9	\begin{align*}			•		
	-	N ⁺ C ⁺			e e		
2/2							

Pesticides

USSR

wc 632.937

HOVOZHILOV, K. V., and SHUMAKOV, YE. M.

"Biological Method of Pest Control and Contemporary Chemistry"

Moscow, Zhurnal Vsesoyuznogo Khimicheskogo Obshchestva imeni D. I. Hendeleyev, Vol 18, No 5, 1973, pp 545-552

Abstract: A review with 66 references discussing the spectrum of entomological pest control agents. The early direction of the research in this area, reaching into preceeding century, was aimed at natural enemies of the pests. However, the microbiological control method appeared to be effectively used only in the U.S.A. and USSR. The next research period was aimed at bacteria, viruses, fungi on one hand, and at chloroorganic compounds with specific selective activity on the other. The most recent direction in the research effort is aimed at genetic methods, the so called sterile male technique, discovery of which the authors attribute to A. S. Serabrovskiy. The most recent achievement in the fight to control pests is the development of new lines of insects with complex chromosomes, synthesis of sex attractants—the pheromones—and finally synthesis of sex hormones.

1/1

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002202230007-3"

USSR

VDC: 577.3

NUZHINA. A. M., SEDYKH, N. V., and SAFRONOVA, M. M., Kazan' State University imeni V. I. Ul'yanov-Lenin

"Study of Immunological Reactivity and Immune Specificity of DNAses from Bac. amylozyma and Serr. marcescens"

Moscow, Biofizika, Vol 16, No 1, Jan/Feb 71, pp 142-144

Abstract: A study was made of the dielectric properties and conformation changes in the macromolecules of enzymes isolated from S. marcesens (strain 11) and B. amylozyma (strain 9) and in humoral antibodies elaborated in response to the administration of these nucleases. The reaction of the enzymes with the corresponding antibodies resulted in their dehydration due to rupture of the "biomacromolecule - water" bond and appearance of a "biomacromolecule - biomolecule" (antigen + antibody) bond. It appears that there are complementary groups or regions in the antigen and antibody molecules.

1/1

£7_**-**

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002202230007-3"

er det foren den er beste beste beste kom () i () dektresse te () de () det er beste bes beste bes PROCESSING DATE-300CT70 UNCLASSIFIED TITLE -PENETRATION OF DEOXYRIBONUCLEASES INTO INTACT CELLS OF EHRLICH 1/2 022 CARCINOMA AND THEIR INFLUENCE ON NUCLEIC ACID SYNTHESIS -U-AUTHOR-103)-NUZHINA, A.M., VINTER, Y.G., GAREYSHINA, A.Z. CCUNTRY OF INFO-USSR SOURCE--- VOP. CNKCL, 1970, 16(4), 99-103 DATE PUBLISHED ------70 SUBJECT AREAS-BIOLOGICAL AND MEDICAL SCIENCES TOPIC TAGS-CARCINOMA, RNA, DNA, PANCREAS, BACTERIA, RIBONUCLEASE, BIDSYNTHESIS CONTROL MARKING-NO RESTRICTIONS DOCUMENT CLASS--UNCLASSIFIED STEP NO--UR/0506/70/016/004/0099/0103 PROXY REEL/FRAME-3002/0486 CIRC ACCESSION NO-APO128055

> APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002202230007-3"

UNCLASSIFIED

2/2 022 CIRC ACCESSION NOAPOLO		PROCESSING DATE300CT7C REATIC OR SERRATIA MARCESCENS CELLS. APPARENTLY IN 2 STAGES	ITALIA MILITARINA SERIFA SERIFANIA	
DNASE PENETRATED INTAC INVOLVING ADSORPTION OF INTO THE CYTOPLASM. STIMULATED AND AT LARG SYNTHESIS OF DNA AND O	ON THE CELL MEMBRANE S IN SMALL CONCNS. (10 M	CELLS, APPARENTLY IN 2 STAGES SURFACE AND DIRECT PERMEATION MUG-ML) EXOGENOUS DNASE-ML) SHARPLY INHIBITED THE STATE KAZAN UNIV., KAZAN,		
USSR•				
	UNCLASSIFIED			

UDC 533.6.011

USSR

NUZHTNA, T. S.

"Optimal Averaging of the Profile in a Supersonic Linearized Gas Stream"

Tr. Kazan. aviats. in-ta (Works of Kazan' Aircraft Institute), 1971, vyp. 130, pp 51-59 (from RZn-Mekhanika, No 11, Nov 71, Abstract No 11,8183)

Translation: The problem of the symmetric minimum drag profile around which there is a supersonic stream of gas with zero angle of attack is solved. Random factors affecting the shape of the profile, which can be errors in manufacturing it, and so on, are considered. The problem is reduced to finding the minimum drag dispersion of the profile with given mathematical expectation of the drag and also for given maximum thickness of the profile, length of chord and profile area. The solution of the problem is found by the method of optimal averaging for discontinuous stochastic systems. An example calculation is presented.

1/1

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002202230007-3"

USSR

1/1

UDC: 669.783.5:538.2

ZAV'YALOV, V. K., RADOVSKIY, I. Z., LEVIN, Ye. S., NVZOROVA, E. G., GEL'D, P. V., Sverdlovsk

"Magnetic Properties of Liquid Alloys of Germanium with Iron, Cobalt and Nickel"

Moscow, Izvestiya Akademii Nauk SSSR, Metally, No 6, 1973, pp 32-34.

Abstract: This article presents the results of investigation of the magnetic susceptibility of liquid Fe-Ge, Co-Ge and Ni-Ge alloys. The concentration-temperature dependence of magnetic susceptibility was studied by the Faraday method in the 900-1700° C temperature interval. It was found that the Curie-Weiss law is followed in Fe-Ge melts where $N_{Ge} < 0.7$, in Co-Ge melts where $N_{Ge} < 0.45$, and is not followed in Ni-Ge melts. The concentration dependences of effective magnetic moments μ_{eff} for Fe-Ge and Co-Ge alloys differ qualitatively. In the first case, the dependence of μ_{eff} on N_{Ge} shows a minimum near $N_{Ge} = 0.2$, while in the second case μ_{eff} remains independent of concentration approximately up to $N_{Ge} = 0.15$, then increases from 3.0 μ_{B} to 3.7 μ_{B} (at about 30 at. % Ge).

- 75 -

1/2 020 UNCLASSIFIED PROCESSING DATE--300CT70
TITLE--A LACUNAR CONDITION OF THE BRAIN IN AN ATHEROSCLEROTIC PHASE OF
HYPERTENSIVE DISEASE -U-

AUTHOR-102)-LITVAK, L.B., NYAGUBELYAYEVA, A.I.

COUNTRY OF INFO--USSR

SOURCE—ZHURNAL NEVROPATOLOGII I PSIKHIATRII IMENI S. S. KORSAKOVA, 1970, VOL 70, NR 6, PP 801-808

DATE PUBLISHED————70

SUBJECT AREAS-BIOLOGICAL AND MEDICAL SCIENCES

TOPIC TAGS-HYPERTENSION, ATHEROSCLEROSIS, BRAIN, SENSORY MOTOR AREA

CENTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--3001/1015

STEP NO--UR/0246/70/070/006/0301/0808

CIRC ACCESSION NO--APO126653

UNCLASSIFIED

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002202230007-3"

THE STREET AND THE REPORT OF THE STREET WAS A STREET OF THE STREET OF TH

PROCESSING DATE-- 300CT70 UNCLASSIFIED 2/2 020 CIRC ACCESSION NO--AP0126653 ABSTRACT/EXTRACT--(U) GP-0- ABSTRACT. COMPARING THE FEATURES OF CEREBRAL SYMPTOMATOLOGY AND THE SPECIFIC PATHOMORPHOLOGICAL CHANGES OF THE BRAIN TISSUE THE AUTHORS DISCUSS THE FEATURES OF A LACUNAR CONDITION OF THE BRAIN IN AN ATHEROSCLEROTIC PHASE OF HYPERTENSIVE DISEASE. A COMBINATION OF TYPICAL EXTRAPYRAMIDAL MOTOR DISORDERS, A SPECIFIC GALT, PSEUDOBULBAR SYMPTOMS. CHANGES SENSITIVENESS AND GROSS MEMORY IMPAIRMENT DETERMINE THE SPECIFIC CLINICAL PICUTRE. THE BASIS OF IT IS A DEVELOPMENT OF MANY SMALL FOCI WITH BRAIN DISTRUCTION: LACUNAE, THE EUCATION OF WHICH HAS A PREDILECTIVE CHARACTER. THE AUTHORS STRESS THE PROGRESSIVE DEVELOPMENT, WITHOUT STROKES, WHERE 2 PERIODS CAN BE ELIMINATED. THIS FORM OF CEREBRAL VASCULAR PATHOLOGY IS FREQUENTLY SEEN NOT CNLY IN OLD AGE, BUT IN YOUNGER PATIENTS AS WELL. KHAR KOVSKIY NAUCHNO ISSLED. INSTITUT NEVROLOGII I PSIKHIATRII. UNCLASSIFIED

USSR

UDC: 519.21

NYAMURA, A. A.

"On Asymptotic Stability of One Class of Extremum Systems"

Tr. AN LitSSR (Works of the Academy of Sciences of the Lithuanian SSR), 1970, B, No 3(62), pp 141-146 (from RZh-Kibernetika, No 7, Jul 71, Abstract No 7V125)

Translation: This paper deals with the free motion of extremum systems described by the following system of one-dimensional stochastic differential equations:

 $\frac{dx}{dt} + R(t)x(t) = 0 \tag{f}$

where $x(l) = (x, (l), x, (l), \dots, x_n(l))^T$ is some random process which is stationary in a broad sense, $R(l) = r(l) r^T(l) = ||R_{hl}(l)|| (k, l = 1, 2, \dots, N)$ is a random matrix function which is stationary in a broad sense, the matrix R(t) being non-negatively defined with rank equal to unity at any time $t \in [0, \infty)$. It is proved that system (1) is asymptotically stable on the rms average if the constant matrix $R = M\{R(t)\}$ is positively defined. It is also shown that

1/2

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002202230007-3"

NYAMURA, A. A., Tr. AN LitSSR, 1970, B, No 3(62), pp 141-146

system (1) is "almost certainly" asymptotically stable if r(t) is ergodic.

Author's abstract.

USSR

NYAMURA, A. A.

of observations, on the assumption that

$$z(t) = \sum_{s} w(s) g(t-s) + n(t)$$

and that the number s for which estimate w(s) reaches its maximum value be considered the estimate of τ . Conditions are presented under which this estimate will probably be near the value of τ . Also, in continuous time an estimate τ is presented, calculated using the least squares method and the method of stochastic approximation.

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002202230007-3"

CIA-RDP86-00513R002202230007-3 "APPROVED FOR RELEASE: 09/17/2001

USSR

DUSHAUSKENE-DUZH, N.-R. F., MARCHYULENENE, E. -D. P., NYANISHKENE, V. B., SHCHULIYENE, R. I., and POLIKARPOV, G. G.

"The Uptake of Radionuclides by Some Fresh-Water Hydrobionts"

Vil'nyus, Tr. AN LitSSR (Proceedings of the Academy of Sciences Lithuanian SSR), B, No 3 (59), 1972, pp 201-212 (from Referativnyy Zhurnal--Biologicheskaya Khimiya, No 5, 1973, Abstract No 5F1532)

Translation: As a result of investigations conducted under natural conditions in 1967-1968 (10 fresh water ponds in the Lithuanian SSR), it was established that the accumulation coefficients (AC) for 90Sr and 210pb did not differ in fishes and molluses, while in the case of plants the AC for 210pb was an order of magnitude less than that for 90Sr. A definite correlation was found to prevail between the concentrations of 90Sr and 210pb. The AC for 90Sr and 210Pb were found to depend on the ash content of the hydrobionts. The highest AC for 90Sr, 137Cs, 144Ce, and 106Ru were observed hydrobionts of the phytoplankton and in the silt. Of the various radionuclides, 144Ce had the highest AC in the hydrobionts, and 137Cs in the silt. The AC of 90Sr was relatively low in the hydrobionts and silt. The 1/2

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002202230007-3"

क्षत्र कराम स्वयं कार्यक विकास सम्बद्धा स्वयं कार्यक सम्बद्धा स्वयं कार्यक स्वयं कार्यक स्वयं कार्यक स्वयं कार स्वयं कार्यक सम्बद्धा सम्बद्धा स्वयं कार्यक सम्बद्धा सम

DUSHAUSKENE-DUZH, N.-R.F., et al., Tr. AN LitSSR, B, No 3 (59), 1972, pp 201-

intense accumulation of $^{137}\mathrm{Cs}$, $^{144}\mathrm{Ce}$, and $^{106}\mathrm{Ru}$ in the silt from the aquatic environment serves to decrease the uptake of these radionuclides by chironomid larva. The chironomid larva assimilate radionucleotides in the following quantities from a radioactive meal: 90Sr -- 10%, 137Cs -- 9%, 144Ce --117, and 106Ru -- 6%. Year old carps assimilate 10% of the total quantity of 144Ce in a radioactive meal (chironomids), which pass through their gastrointestinal tract. The uptake of 90Sr, 137Cs, 144Ce, and 106Ru by zebra mussels and chironomid larvae, of 90Sr into the organisms of pond snails, and of 144Ce by the year old carps occurs primarily from the aqueous environment, and in smaller quantities from the food. It was shown that fishes belonging to different trophic levels (carps and predatory fishes) accumulate 90sr to the same extent. Analogous findings held for 210pb. The AC for each of these radionuclides does not depend on the type of nutrition of the fish.

2/2

CIA-RDP86-00513R002202230007-3"

APPROVED FOR RELEASE: 09/17/2001

UBSR

UDC 591.1.15

rerendenterendunterendunt zuen ernatzener zimmunden er in internatzionen einen ernatzionen er inautere des ausmatzisten ernatzionen erroren errore

MARCHYULENENE, D. P. and NYANISHKENE, V. B.

"Accumulation and Distribution of 90 Sr, 137Cs, 144Ce, 106Ru in Dreissena Polymorpha and in Lymnea Stagnalis"

Kaunas, Trudy Akademii Nauk LitSSR, No 2(58) Series B, 1972, pp 141-145 (from Referativnyy Zhurnal -- Biologicheskaya Khimiya, No 22, 1972, Abstract No 22F1609)

Translation: It was established that the radionuclides under study are accumulated and distributed unevenly in individual tissues of many species of fresh water mollusks, such as Dreissena polymorpha and in pond snails, such as Lymnea stagnalis. The largest amount of radionuclides is accumulated in the shell, with 97, 77, 92, and 94% of 90Sr, 37Cs, 144Ce, and 100Ru in mollusks, and 90% of 90Sr in pond snails of the total amount of each radionuclides accumulated in the whole body. Such a distribution of radionuclides in mollusks depends on the ability of certain tissues to concentrate the radionuclides and on the weight ratio of each tissue to the total weight of the mollusk.

1/1

UDC: 577.1:615.7/9

TREGUBENKO, I. P., SUKHACHEVA, Ye. I., BELOVA, M. N., HYLTHIA O. A., MEN'-SHIKOVA, G. A., SEMENOV, D. I.

"Effect of Ethylenediaminetetracetic, Cyclohexylaminetetracetic and Diethylenetriaminepentacetic Acid Sodium Salts on the Behavior of Cadmium-1.15 in an Organism"

Tr. In-ta ekol. rast. i zhivotnykh. Ural'sk. fil. AN SSSR (Works of the Institute of Plant and Animal Ecology. Ural Affiliate, Academy of Sciences of the USSR), 1970, vyp. 68, pp 65-67 (from RZh-Biologicheskava Khimiya, No 23, 10 Dec 70, Abstract No 23F2208)

Translation: The cadmium complex with ethylenediaminetetraacetic acid sodium salt is partially dissociated under conditions in the organism, whereas cadmium complexes with cyclohexylaminetetraacetic and disthylenetriamine-pentaacetic acid sodium salts, which have higher constants of stability, are almost completely eliminated from the organism of rats within the first few days. Early application of the complexing agents appreciably reduces the deposition of cadmium in the tissues, and increases its elimination with

1/2

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002202230007-3"

USSR

TRECUBENKO, I. P., et al., Tr. In-ta ekol. rast. i zhivotnykh. Ural'sk. fil. AN SSSR, 1970, vyp. 68, pp 65-67

urine. Diethylenetriaminerentaacetic acid sodium salt has the most pronounced effect. Stable complexes of cadmium-115 are eliminated almost entirely through the kidneys, part of the isotope being selectively retained in the kidneys (23-18 percent of the residue in the organism), which may be utilized for irradiation of kidney tumors. From the authors' resume.

2/2

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002202230007-3"

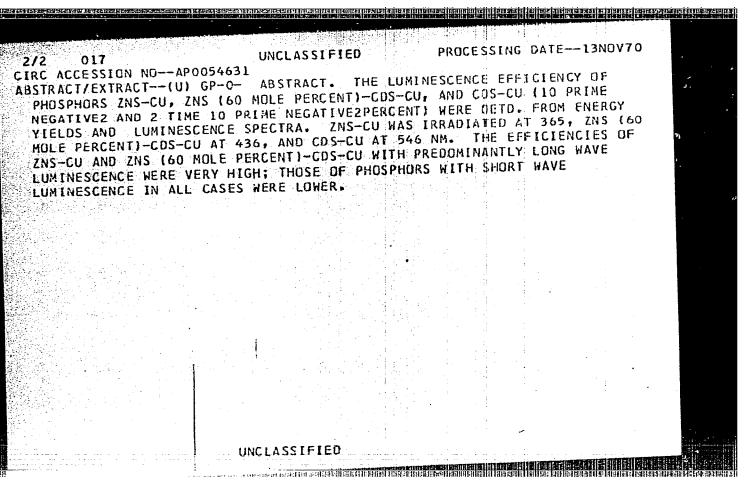
J., Central Institute of Physics, Budapest and SMORODINSKIY, Ya. A., USSR

Joint Institute for Nuclear Research NYIRI

"Eigenfunctions in the Three-Body Problem"

Moscow, Yadernaya Fizika, Vol 12, No 1, 1970, pp 202-216

Abstract: A method for transforming the eigenfunctions of a system of three particles with the quantum numbers K, j₁, M₁, j₂, M₂ to a system of functions which simultaneously realize also the representation of a permutation group (quantum number)) is described. If symmetry with respect to the permutations is not required of the eigenfunctions, the solution of the problem becomes completely elementary. In such a case it may be constructed most simply of all by use of the "tree" method. Attempts to construct a system of functions which possess a definite symmetry with respect to the permutations have not been carried through to the end. The present article employs a different approach, namely an indirect one. An attempt is made to find a method of passing from the complete system of functions constructed by the "tree" method to K-harmonics. This solution is reduced to a Fourier transform. For a complete transition to K-polynomials it is also necessary to satisfy the equation for the eigenvalue of operator A. 1/1


- 60 -

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002202230007-3"

ASSIFIED PROCESSING DATE--13NOV70 1/2 017 UNCLASSIFIED TITLE -- EXPERIMENTAL DETERMINATION OF THE LUMINESCENCE EFFICIENCY OF SOME ZING SULFIDE PHOSPHORS -U-AUTHOR-(03)-NYMM, U.KH., PLEKHANOV, V.G., RAMMO, I.KH. CCUNTRY OF INFO-USSR SOURCE-ZH. PRIKL. SPEKTROSK. 1970, 12(1) 153-5 DATE PUBLISHED 70 SUBJECT AREAS -- PHYSICS TOPIC TAGS-LUMINESCENCE, PHOSPHORUS COMPOUND, ZINC SULFIDE, CADIUM SULFIDE, COPPER CONTROL MARKING-NO RESTRICTIONS DOCUMENT CLASS--UNCLASSIFIED STEP NO--UR/0368/70/012/001/0153/0155 PROXY REEL/FRAME--1983/1797 CIRC ACCESSION NO--APO054631

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002202230007-3"

UNCLASSIFIED

UNCLASSIFIED PROCESSING DATE -- 27NOV70

1/2 011
TITLE--TECTONIC CLAYS FROM LEAD ZINC DEPOSITS OF THE SADON ORE FIELD -U
AUTHOR-(02)-KOBILEV, G.A., NYRKOY, A.A.

COUNTRY OF INFO--USSR

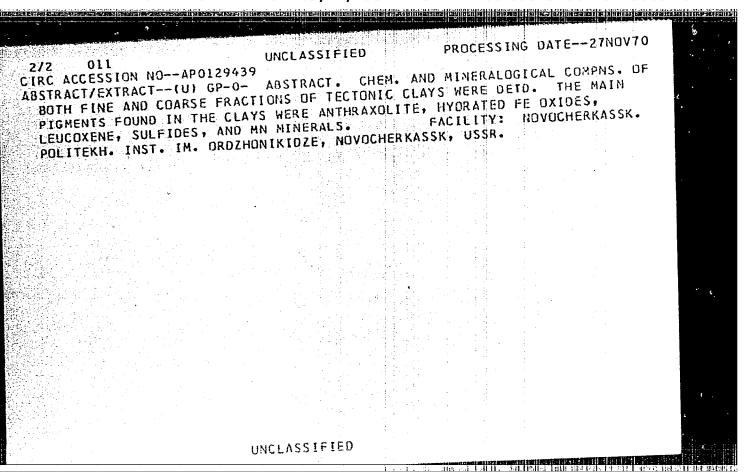
SOURCE--GEOL. RUD. MESTOROZHD. 1970, 12(11, 105-10)

DATE PUBLISHED-----70

SUBJECT AREAS--EARTH SCIENCES AND OCEANOGRAPHY

TOPIC TAGS--LEAD, ZINC, MINERAL DEPOSIT, IRDN OXIDE, SULFIDE, MANGANESE, GEOGRAPHIC LOCATION

CONTROL MARKING--NO RESTRICTIONS

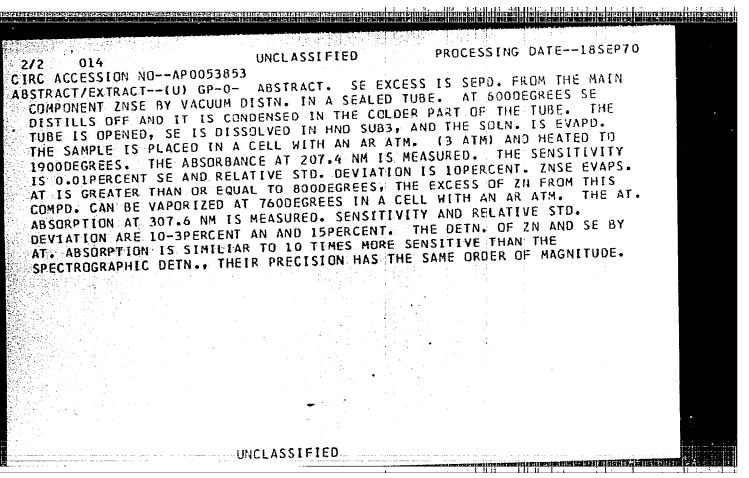

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--3003/0183

STEP NO--UR/0306/70/012/001/0105/0110

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002202230007-3"

CIRC ACCESSION NO--AP0129439

UNCLASSIFIED


UNCLASSIFIED PROCESSING DATE--27NOV70 1/2 040 TITLE--REDISTRIBUTION OF COMPONENTS IN SOLIS SOLUTIONS STUDIED BY X RAY SPECTRAL MICROANALYSIS AND ELECTRON MICRUSCOPY -U-AUTHOR-(05)-KIYEVSKAYA, N.KH., KOPP, L.P., BRUK, B.I., NYRKUYSKAYA, V.V., KOROLEVA, N.V. COUNTRY OF INFO--USSR STURCE-FIZ. METAL METALLOVED. 1970, 29(2), 409-13 DATE PUBLISHED-----70 SUBJECT AREAS -- MATERIALS TOPIC TAGS--ELECTRON MICROSCOPY, SOLID SOLUTION, TRACE ANALYSIS, CRYSTAL EATTICE, ALUMINUM ALLOY, IRON ALLOY, CUPPER ALLOY, GRAIN BOUNDARY, SURFACE ENERGY, X RAY SPECTRUM, MOLYBOENUM CONTAINING ALLOY, TUNGSTEN CONTAINING ALLOY, TIN CONTAINING ALLOY, COPPER CONTAINING ALLOY CONTROL MARKING--NO RESTRICTIONS DOCUMENT CLASS--UNCLASSIFIED STEP NO--UR/0126/70/029/002/0409/0413 PROXY REEL/FRAME--3001/0324 CIRC ACCESSION NO--APOLZ6081 UNCLASSIFIED

PROCESSING DATE--27NOV70 UNCLASSIFIED CIRC ACCESSION NO--APO126081 ABSTRACT/EXTRACT-- (U) GP-0- ABSTRACT. THE FOLLOWING 6 ALLOYS WERE INVESTIGATED: FE PLUS 0.75PERCENT CU; FE PLUS 8.25PERCENT HO; FE PLUS 7.63PERCENT W; CU PLUS 1.78PERCENT FE; CU PLUS 11.2PERCENT SN; AND AL PLUS 2.1PERCENT CU. THE SAMPLES WERE SUBJECTED TO HIGH TEMP. DIFFUSION ANNELAING, THEN TO SEDONDARY ANNEALING AND QUENCHING. IN ALLOYS QUENCHED FROM THE HOMOGENEOUS REGION THE GRAIN BOUNDARIES ARE MARKEDLY ENRICHED WITH THE SECONDARY COMPONENT AS COMPARED TO THE INTERNAL VOL. OF THE GRAINS. THE EXTENT OF THIS ENRICHMENT, AS A RULE, INCREASES AS THE ALLOY IS CLOSER TO THE SOLY. LIMIT. THE CONCUS. OF THE COMPONENTS AT THE GRAIN BOUNDARIES IN THE ABSENCE OF PPTS. OF THE SECONDARY PHASE ALMOST ALWYAS WXCEEDS THE LIMITING SOLY. OF THE ELEMENT (WHEN FAR REMOVED FROM THE SOLY. LIMIT), THIS POINTS TO THE FORMATION OF AT. GROUPS ALONG THE GRAIN BOUNDARIES. THE NONREPRODUCBILITY OF THE RESULTS ATTESTS TO THE NONUNIFORM DISTRIBUTION OF THE ELEMENT ALONG THE GRAIN BOUNDARIES. THE REASON FOR THIS MUST PROBABLY BE TRACED BACK TO THE DIFFERENCE IN THE MUTUAL ORIENTATION ANGLE OF THE CRYST, LATTICES AT VARIOUS POINTS OF THE TOUCHING GRAINS. WHEN THIS ANGLE IS 45DEGREES, THE FREE SURFACE ENERGY IS AT ITS MAX., AND THE POINT CONCN. OF THE ELEMENT IS THE MOST PROBABLE. ON THE OTHER HAND, AT THOSE POINTS WHERE THE ANGLE IS CLOSE TO O OR TO GODEGREES, THE FREE SURFACE ENERGY IS AT ITS MIN. AN ATTEMPT IS HADE TO EXPLAIN THESE ANOMALIES. FACILITY: SEV.-ZAPAD. ZAOCH. POLITEKH. INST., LENINGRAD, USSR.

UNCLASSIFIED

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002202230007-3"

UNCLASSIFIED PROCESSING DATE--18SEP70 1/2 014 TITLE--USE OF ATOMIC ABSORPTION SPECTRA FOR DETERMINING EXCESS QUANTITIES OF SELENIUM AND ZINC IN ZINC SELENIDE -U-AUTHOR-103)-RUDNEVSKIY, N.K., DEMARTI, V.T., NYROKOVA, O.A. COUNTRY OF INFO--USSR SOURCE-ZH. PRIKL. SPEKTROSK. 1970, 12(1), 156-8 DATE PUBLISHED ---- 70 SUBJECT AREAS--CHEMISTRY TOPIC TAGS--ATOMIC SPECTRUM, ABSORPTION SPECTRUM, SELENIUM, SELENIUM, SELENIUM COMPOUND, ZINC, ZINC COMPOUND, VACUUM DISTILLATION CONTROL MARKING--NO RESTRICTIONS DOCUMENT CLASS--UNCLASSIFIED STEP NO--UR/0368/70/012/001/0156/0158 PROXY REEL/FRAME--1983/0929 CIRC ACCESSION NO--AP0053853 UNCLASSIFIED

UDC 539.67

USSR

FELTAM, P., and N'YUKHEM, S.

"Internal Friction in Copper and X-Brass in the Process of Plastic Deforma-

Sb. "Vnutrenneye treniye v metallicheskikh materialakh" (Internal Friction in Metallic Materials), Moscow, Izd-vo "Nauka," 1970, pp 68-73

Abstract: Internal friction in copper and α -brass was investigated by the method of torsional vibrations in the plastic deformation process.

The amplitude dependence of internal friction, observed at the near yield state, is explained by the interaction of a cyclical stress with a creeping deformation component. The amplitude-independent internal friction at higher plastic deformations is attributed to losses arising because of a torsional stress contribution to plastic deformation. The zinc content does not affect the internal friction up to a maximum tensile deformation of 1%. 3 figures, 7 references.

1/1

USSR

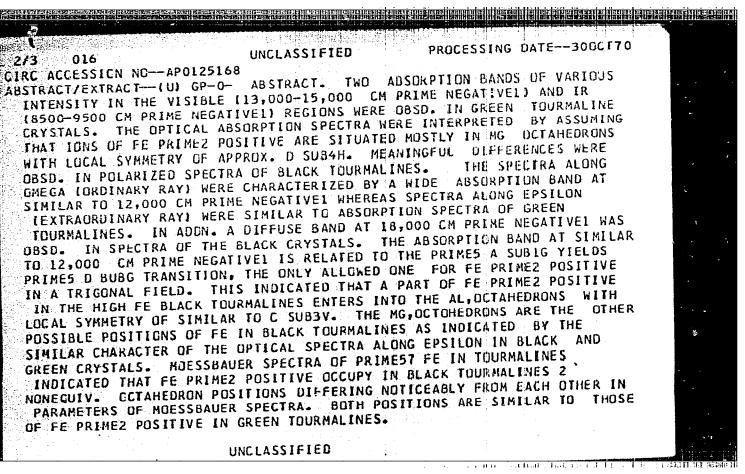
NYUKSHA, Yu. P.

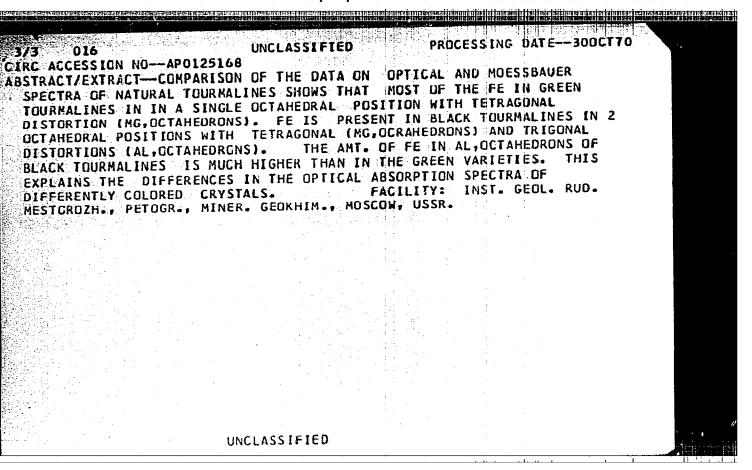
"Activity of the Committee on Biological Damage to Materials of the All-Union Botanical Society"

Leningrad, Mikologiya i Fitopatologiya, No 6, 1972, pp 466-467

Abstract: The Committee on Biological Damage was appointed to facilitate contacts and exchange of views between Leningrad specialists scattered in many state agencies and research organizations. Study of the damage done to materials by microorganisms has been transformed from a purely applied field based on empirical principles to a broad discipline with its own research techniques and goals. During 1971 the committee met a number of times to hear reports of two kinds: (a) studies on the ecological and physiological characteristics of the mycoflora and (b) development of new methods for assessing the activity of various fungi. Some of the subjects discussed were the activity of cellulose-destroying fungi, physiology of some micromycetes, activity of fungi on paper in relation to original pH, buffer properties of the medium, etc., effect of a biological film on the coefficients of light transmission and diffusion, change in physicochemical properties of paper attacked by fungi, and methods of mathematically analyzing the results of tests of fungicides. 1/1

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002202230007-3"


UNCLASSIFIED PROCESSING DATE--300CT70 7173 O16 TITLE-OPTICAL AND HOESSBAUER SPECTRA OF IRON IN TOURMALINES +U-AUTHOR-(05)-MARFUMIN. A.S., MKRTCHYAN, A.R., NADZHARYAN, G.N., NYUSSIK. YA.M. PLATONOV. A.N. COUNTRY OF INFO-USSR SOURCE-IZV. AKAD. NAUK SSSR, SER. GEOL. 1970. (2), 146-50 DATE PULL ISHED ---- 70 SUBJECT AREAS--CHEMISTRY, EARTH SCIENCES AND OCEANOGRAPHY TOPIC TAGS-ABSCRPTION BAND SPECTRUM, IRON, ALUMINUM SILICATE MINERAL, CRYSTAL MOSSBAUER SPECTRUM


CENTROL MARKING-NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME-2000/1541

STEP NO--UR/0011/70/000/002/0146/0150

CIRC ACCESSION NU--APO125168 UNCLASSIFIED

USSR

UDC 621.373.521.1:621.382.233

BOBROVSKIY, YU. L., BOL'SHAKOVA, N. P., OBCHINNIKOV, K. D., TSUKER, M. S.

"Superhigh Frequency Tunnel Diode Generator with a Wide Mechanical Tuning Band"

Materialy nauchno-tekhn. konferentsii. Leningr. elektrotekhn. in-t svyazi. Vyp. 2 (Materials of the Scientific and Technical Conference. Leningrad Electrotechnical Communications Institute. Vyp. 2), Leningrad, 1970, pp 204-207 (from RZh-Radiotekhnika, No 9, Sep 70, Abstract No 9D261)

Translation: The results of an experimental investigation of a superhigh frequency tunnel diode generator with a wide range of mechanical tuning are presented. The applicability of the quasilinear approximation for calculating the output power is demonstrated. There are two illustrations and a two-entry bibliography.

1/1

USSR

UDC 615.355.099

PRIPUTINA, L. S., OBBARIUS, I. D., BOTSMAN, N. YE., GNATYUK, V. N., and SVETLAYA, G. V., Laboratory for the Investigation of Food Additives, Kiev Scientific Research Institute of Nutritional Hygiene

"Determination of the Toxicity of Enzymatic Preparations of Microbal Origin Designed for Use in the Food Industry"

Moscow, Voprosy Pitaniya, No 6, Nov/Dec 71, pp 43-48

Abstract: The amylolytic preparation Nigrin SR, made from Asp. niger strain EU-119 and used in the production of juices and nonalcoholic beverages, and a second enzymatic prepatation, made from Asp. oryzae strain 476-I and used in brewing of beer, were tested on white rats and ducklings. The preparations caused a reduction in serum antibodies, an increase in the relative weight of the liver, a decrease in the DNA phosphorus concentration in the liver, changes in liver glycogen content, hyperemia of the spleen, hyperplasia of lymphatic tissues, and degenerative changes in the liver and other organs. The disorders are ascribed to the presence of the fungi's metabolic products and unindentified fluorescent substances in the preparations. It is concluded that the Nigrin SR preparation may be used after purification by the method described.

1/1

Polymers and Pulymerization

UDC 678.049:66.018.86

USSR

KRYLOVA, S. V., KULIKOVA, A. Ye., OBCHINNIKOV, Yu. V., BERLYANT, S. M.

"Effect of γ -Irradiation on the Stability of Polyvinyl Chloride Plasticizers"

Moscow, Plasticheskiye Massy, No 1, 1973, pp 16-18

Abstract: A study was made of the effect of γ -radiation on the chemical stability of phthalic esters, sebacic acid and adipic acid and the effect of the nature of the acid and alcohol radicals of plasticizers on their behavior during γ -radiation. γ -Irradiation of plasticizers leads to a sharp increase in their acidity; therefore, variation of this index was taken as one of the criteria for evaluating the degree of decomposition of the plasticizers. The degree of composition depends, significantly on the length of the alcohol radical. With an increase in length of this radical the acidity of the plasticizer and ΔN increase (N is the number of carboxyl groups in the plasticizer).

The decomposition of the esters was described as follows:

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002202230007-3"

USSR

KRYLOVA, S. V., et al., Plasticheskiye Massy, No 1, 1973, pp 16-18

The results of the effect of the nature of the alkyl radical of esters of phthalic acid on their resistance to γ -radiation and the effect of the -ature of the acid radical on the resistance of polyvinyl chloride plasticizers to γ -radiation are tabulated. After subjecting dioctyl phthalate and dioctyl adipate to γ -radiation with different initial acidity it was found that the greater the initial acidity of these compounds, the less the relative increase in acidity after irradiation. The increase in acidity for dioctyl phthalate after irradiation was always less than for dioctyl adipate. Thus, dioctyl phthalate has self-defensive properties with respect to γ -radiation. The high stability of "acid" plasticizers can be explained by the fact that the high content of free carboxylic acid in the initial esters prevents their decomposition under the effect of γ -radiation. The stabilization of the esters by carboxylic acid probably arises from the absorption or dissipation of some portion of the γ -radiation energy.

2/2

- 68 --

REFINERY TO FATTY ACIDS -UAUTHOR-(03)-GORVACHEVA, G.A., PERCHENKO, A.A., OBEREMKO, A.V.

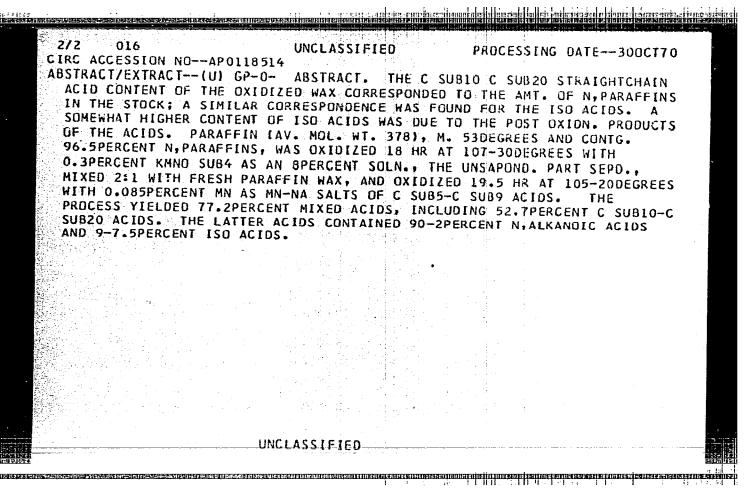
COUNTRY OF INFO--USSR

SOURCE--NEFTEPERERAB. NEFTEKHIM. (MOSCOW) 1970, (1), 34-7

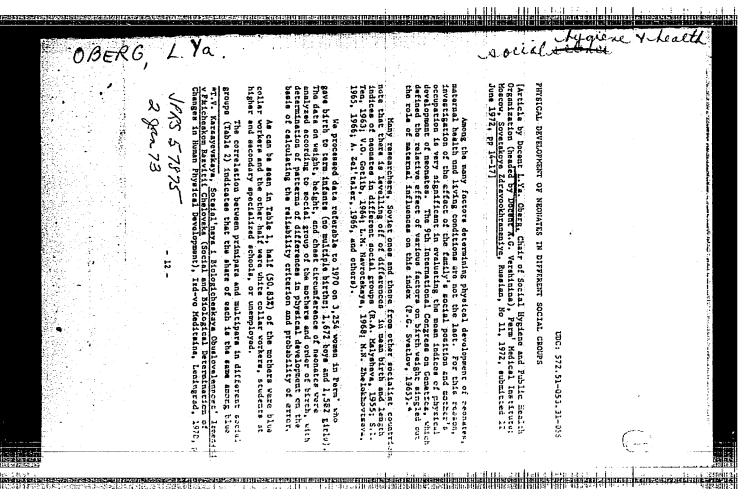
DATE PUBLISHED ---- 70

SUBJECT AREAS--CHEMISTRY, MATERIALS

TOPIC TAGS--PARAFFIN WAX, OXIDATION, PETROLEUM PRODUCT, PETROLEUM REFINERY, CARBOXYLIC ACID, CHEMICAL SYNTHESIS


CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1996/1527


STEP NO--UR/0318/70/000/001/0034/0037

CIRC ACCESSION NO--APO118514

---- UNCLASSIFIED

PROCESSING DATE--300CT70 UNCLASSIFIED 029 2/2 ABSTRACT/EXTRACT-- (U) GP-0- ABSTRACT. SYSTEMATIC EXPTL. STUDIES WERE CIRC ACCESSION NO--AP0129659 DONE TO CLARIFY CAUSES OF DETONATION FAILURES DURING BLASTING. THE AND GRANULIT AS WERE USED AS EXPLOSIVES. EXPLOSIVE CHARGES WERE PLACED IN GLASS TUBES 3.5-4 M LONG AND OF 100-140 MM IN DIAM. FACTORS CONSIDERED INCLUDED: STICKING OF THE CHARGE; FORMATION OF VOIDS; CONTAMINATION OF THE CHARGE WITH WATER, DUST, GRANULES, AND PIECES OF URE; PRESENCE OF WATER IN THE BLASTING HOLE; ETC. DETONATION FAILURES ARE NOT LIKELY TO BE CAUSED BY VOIDS AND THE PRESENCE OF INERT CONTAMINANTS. THE PRESENCE OF H SUB2 O CAN CAUSE FAILURES IN THE CASE OF SOL. OR H SUB2 O REACTIVE EXPLOSIVES. UNSTABLE EXPLOSIVES CAN THEN FORM A KIND OF INERT BARRIER. TROTYL AND TROTYL HEXOGEN DETONATORS ARE EFFECTIVE AND RELIABLE EVEN IN LOW WTS. (13-200 G); THEY MUST BE USED IN SCHEWHAT LARGER AMTS. FOR INITIATION OF DETCNATION OF H SUB2 O CONTAMINATED EXPLOSIVES. THE MOST FREQUENT FAILURES ARE DUE TO QUENCHING OF BURNING OF THE DETONATION CORD. WHICH HAPPENS WHEN THE CORE OF THE CORD IS MOIST. IT IS RECOMMENDED THAT THE MOISTURE INSULATION OF DETONATION CARDS BE INCREASED BY APPLYING AN EXTRA BITUMINOUS LAYER. FACILITY: INST. GEOTEKH. MEKH., KIEV, USSR. UNCLASSIFIED

"APPROVED FOR RELEASE: 09/17/2001 C

CIA-RDP86-00513R002202230007-3

Acc. Nr.: AR 0103268 JPRS 49937 Geomagnetic Pulsations of Type Pc5 (Abstract: "Study of Pc5 Geomagnetic Pulsations," by P. Oberts: Leningrad. Uch. Zapiski Leningradskogo Gosudarstvennogo Universiteta, No 346, 1969, pp 107-126) From: Moscow, Referativnyy Zhurnal, Geofizika, Svodnyy Tom, No 1, 1970, Ta 18<u>5</u>7 On, the basis of data in the literature the author reviews the morphologic properties of Pc5 pulsations and their relationship to other geophysical phenomena. A critical analysis is made of current hypotheses concerning the excitation and propagation of Pc5. Simultaneous records of Pc5 for different stations are compared. The results are used in formulating the requirements on a theory which will explain Pc5 appearing during the morning hours. Bibliography of 21 items. Reel/Frame 19861420

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002202230007-3"

THE REPORT OF THE PROPERTY OF

्राहर के प्रतिकृतिक के प्रतिकृतिक के स्वतिकृतिक स्वतिकृतिक स्वतिकृतिक स्वतिकृतिक स्वतिकृतिक स्वतिकृतिक स्वतिकृत स्वतिकृतिक स्वतिकृतिक स्वतिकृतिक स्वतिकृतिक स्वतिकृतिक स्वतिकृतिक स्वतिकृतिक स्वतिकृतिक स्वतिकृतिक स्वतिकृतिक

Devices

USSR

UDC 681.327

DOLGOVESOV, B. S., KOVALEV, A. M., KOTOV, V. N., LUBKOV, A. A., NESTERIKHIN, YU. YE., OBERTYSHEV, K. F., TOKAREV, A. S., YAKINOVICH, A. P., Novosibirsk

"Problems of Constructing Devices for Operative Interaction of Man with a Computer"

Novosibirsk, Avtometriya, No 2, 1972, pp 35-39

Abstract: Two types of devices corresponding to the basic requirements for systems for operative interaction of man with a computer — a computer operating in the time sharing mode and peripheral devices numbering from 1 to 1,000 — have been developed at the Institute of Automation and Electrometry of the Siberian Department of the USSR Academy of Sciences. One of these devices — the Ekran — was discussed previously [B. S. Dolgovesov, et al., Avtometriya, No 4, 1971; R. S. Dolgovesov, et al., Avtometriya, No 4, 1971; A. H. Kovalev, et al., Avtometriya, No 4, 1971; A. H. Kovalev, et al., Avtometriya, No 4, 1971]. The other — the Simbol — is investigated in the present article. A block diagram of the Simbol alphanumeric system is presented, and the alcerithes for the various operating modes of the system are discussed. The absorbithes of all modes of the system are executed by means of a bicromanness o

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002202230007-3"

OLGOVESOV, B. S., et al., Avtometriya, No 2, 1972, pp 35-39

are processed simultaneously; a very high cycle frequency is selected — 2.5
millihertz. The operating logic of the device can be changed. One of the basic milliherts of the operative interaction device along with broad functional parameters of the operative interaction device along with broad functional parameters of the information capacity. Thus, much attention was given to possibilities is the information capacity. Thus speed of the symbol the high speed of individual units, in particular, the speed of the symbol generator which provides 1,024 symbols with an image regeneration the symbol generator which provides 1,024 symbols with an image regeneration the symbol generator which provides 1,024 symbols with an image regeneration of 50 hertz. An example image photograph from the Simbol screen is frequency of 50 hertz. An example image photograph from the Simbol screen is shown.

UNCLASSIFIED PROCESSING DATE--230

1/2 019 UNCLASSIFIED PROCESSING DATE--230

TITLE--ELECTRICAL CONDUCTIVITY OF COMPLEX ZIEGLER CATALYSTS AND THEIR PROCESSING DATE--230CT70 AUTHOR-(04)-OBESHCHALOVA, N.V., SMIRNOVA, G.A., FELDBLYUM, V.SH., TURYAN, ACTIVITY IN OLEFIN REACTIONS -U-YA.I. COUNTRY OF INFO--USSR SOURCE--ZH. OBSHCH. KHIM. 1970, 40(2), 270-5 DATE PUBLISHED----70 SUBJECT AREAS--CHEMISTRY TOPIC TAGS--ELECTRIC CONDUCTIVITY, ALKENE, COMPLEX COMPOUND, CATALYST ACTIVITY, ISOMERIZATION, ORGANDALUMINUM COMPOUND, NICKEL CONTROL MARKING--NO RESTRICTIONS DOCUMENT CLASS--UNCLASSIFIED STEP NO--UR/0079/70/040/002/0270/0275 PROXY REEL/FRAME--1995/1396 CIRC ACCESSION NO--APO116843 UNCLASSIFIED

PROCESSING DATE--230CT70 UNCLASSIFIED ABSTRACT/EXTRACT--(U) GP-0- ABSTRACT. IN THE SYSTEM OF ET SUB3 AL SUB2 CIRC ACCESSION NO--APOII6843 CL SUB3 WITH NI DI-TERT-BUTYLBENZOATE IN PHOL SOLN. AND CONTG. AN EXCESS OF AL RELATIVE TO NI THE RELATION IS SYMBOLIC OF CATALYTIC ACTIVITY FOR ISOMERIZATION OF 2, METHYL, 1, PENTENE TO ELEC. COND. WITH 5 FOLD OR GREATER EXCESS OF AL OVER NI THE COND. OF THE SYSTEM IS GREATER THAN FOUND FOR A LARGE EXCESS OF RALCL SUB2, BUT THE CATALYTIC ACTIVITY IS ABSENT. THE SAME INVERSE EFFECT WAS OBSERVED AFTER THERMAL TREATMENT OF THE CATALYST. THE SYSTEM OF ET SUB3 AL SUB2 CL SUB3 NICL SUB2 SHOWED A SYMBATIC RELATION AMONG CONCN. OF NI, COND., AND CATALYTIC ACTIVITY IN PROPYLENE DIMERIZATION: TREATMENT WITH H RAISED THE COND. AND CATALYTIC ACTIVITY. COND. MAY BE USED AS THE INDEX OF CATALYTIC ACTIVITY ONLY IN CASE OF LARGE EXCESS OF THE ALRCL COMPONENT RELATIVE TO NI SALTS. THIS RULE IS LOST WHEN THE RATIO OF AL TO NI IS LOWERED OR BECAUSE OF HEAT TREATMENT: THIS IS CAUSED BY THE FACT THAT COND. IS THE RESULT OF DISSOCN. OF BUTH ACTIVE CATALYST PARTICLES AS WELL AS OTHER COMPLEXES THAT MAY BE PRESENT. FACILITY: NAUCH .- ISSLED. INST. MONOMEROV SIN. KAUCH., YAROSLAVL, USSR. UNCLASSIFIED

PROCESSING DATE--020CT70 UNCLASSIFIED TITLE-OLIGOMERIZATION OF ETHYLENE UNDER THE INFLUENCE OF A DITSORUTYLALUMINUM CHLORIDE NICKEL DLEATE CATALYTIC SYSTEM -U-AUTHOR-LOSS-FELDBLYUM. V. SH. . LESHCHEVA. A. I. . OBESHCHALOVA. N.V. COUNTRY OF INFO--USSR SOURCE--ZH. DRG. KHIM. 1970, 6(2), 213-18 DATE PUBLISHED -----70 SUBJECT AREAS--CHEMISTRY TOPIC TAGS--FTHYLENE, ALUMINUM CHLORIDE, ORGAND ALUMINUM COMPOUND, HEPTANE, BENZENE DERIVATIVE, BUTANE CONTROL MARKING--NO RESTRICTIONS STEP NO--UR/0366/70/005/002/0213/0213 DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1993/0212 CIRC ACCESSION NO--APO113151 UNCLASSIFIED....

USSR

3.METHYL. 2. PENTENE).

UDC 621.396.6.019.3

PROCESSING DATE--020CT70

CHERNYAYEV, V. N., OBICHKIN, YU. G., and GUSEV, V. P.

"Approximate Calculation of Reliability of the Process of the Production of Radioelectronic Equipment on the Basis of Average Group Intensities of Failure

Moscow, Nadezhnost' i Kontrol! Kachestva, No 8, 1973, pp 22-27

Abstract: Consideration is given to the possibility of calculating the reliability of the process of the production of radioelectronic equipment prior to the start of series production. This process is represented as a system consisting of a set of elements which are the production operations, and as the criterion of reliability of the process is selected the probability of the dectection of a flaw in output passing through the adjustment operations and/or undergoing the acceptance tests. On the basis of such representation, it is possible a) to construct a graph of change of the parameter of flow of failures of the production process as a function of time; b) to determine the nature of distribution of the catch-up time between failures of the process of production of the radioelectronic equipment; c) to conduct an approximate calculation of reliability of the production process prior to initiation of the series production of radioelectronic equipment. 4 tables. 2 references. 1/1

UNCLASSIFIED 0.07 2/2 GIRC ACCESSION NO--APO113151 ABSTRACT. THE TITLE REACTION WAS CARRIED DUT ABSTRACT/EXTRACT--(U) GP-0-BY SUPPROWED FOR ELEASE NO REPLAND PRESSURE THROUGH A MIXT. OF ISO-BU SUB2 ALCL IN N-HEPTANE AND REPLAND REPLAND TEAM-ROPESUBS. CONVERSION OF I WAS SMALLER THAN OR EQUAL TO BEPERCENT AT SIMILAR TO 30DEGREES AND LOWER AT OTHER TEMPS. THE CONVERSION OF I INCREASED WITH AL-NI RATIO, BUT IT REMAINED APPROX. CONST. AFTER 4:6 RATIO WAS REACHED. THE PRESENCE OF LARGER THAN 4 VOL. PERCENT O IN I DECREASED THE CONVERSION. CHANGING THE TEMP., AL-NI RATIO, OXYGEN CONTENT, AND THE RATE OF I FLOW VARIED THE SELECTIVITY OF THE MAIN PRODUCTS FORMATION SMALLER THAN OR EQUAL TO LOOPERCENT FOR BUTENES (MOSTLY 2.BUTENE) AND SMALLER THAN OR EQUAL TO GOPERCENT FOR HEXENES (MOSTLY

USSR

UDC: 621.375.132.3(088.8)(47):621.385.

SUSLOV, I. A., OBIKHVOSTOV, V. D., Tomsk Institute of Radio Electronics and Electronic Technology)

"A Cathode Follower"

USSR Author's Certificate No 250217, filed 14 Mar 68, published 9 Jan 70 (from RZh-Radiotekhnika, No 7, Jul 70, Abstract No 7D155 P)

Translation: To compensate for the effect of parasitic capacitance between the cathode and heater of a tube, an rf choke is connected in one of the conductors of the heater circuit for the tube in this cathode follower, and the other conductor is connected to the cathode through a resistor, and to the ground bus through an inductor and resistor connected in parallel.

1/1

-- 65 --

USSR

UDC: None

YEROZOLIMSKIY, B. G., BONDARENKO, L. N., MOSTOVOY, Yu. A.,

OBINYAKOV. B. A., FEDUNIN, V. P., and FRANK, A. I.

PRINTER AND RELEASED TO THE RESIDENCE OF THE PROPERTY OF THE P

"Measurement of Neutron Spin-Electron Impulse Angular Correlation in the Decay of Polarized Neutrons"

Moscow, Pis'ma v Zhurnal Eksperimental'noy i Teoreticheskoy Fiziki, vol. 13, No. 7, 5 April 1971, pp 356-359

Abstract: This letter offers an experimental method for precise measurement of the angular correlation coefficient in the beta decay of neutrons. To avoid errors due to proton recoil and other factors, the operating part of the neutron beam in the experimental apparatus is separated out by a diaphragm from the electron detector, and the recording of all decay protons corresponding to the recorded electrons is thus guaranteed. A crossectional sketch of the apparatus is given. The polarization coefficient of the neutron beam, measured by the Stern-Gerlach meficient of the neutron beam, measured by the Stern-Gerlach method, was 0.77 ± 0.02 at an intensity of 3.10 neutrons/sec. The

1/2

115 -